8,813 research outputs found

    Backward Raman compression of x-rays in metals and warm dense matters

    Full text link
    Experimentally observed decay rate of the long wavelength Langmuir wave in metals and dense plasmas is orders of magnitude larger than the prediction of the prevalent Landau damping theory. The discrepancy is explored, and the existence of a regime where the forward Raman scattering is stable and the backward Raman scattering is unstable is examined. The amplification of an x-ray pulse in this regime, via the backward Raman compression, is computationally demonstrated, and the optimal pulse duration and intensity is estimated.Comment: 4 pages, 3 figures, submitted to PR

    A method of solving sets of nonlinear algebraic equations Progress report

    Get PDF
    Methods for solving nonlinear algebraic equations in computer programs for nuclear magnetic resonance spectroscop

    Suppression of Landau damping via electron band gap

    Full text link
    The pondermotive potential in the X-ray Raman compression can generate an electron band gap which suppresses the Landau damping. The regime is identified where a Langmuir wave can be driven without damping in the stimulated Raman compression. It is shown that the partial wave breaking and the frequency detuning due to the trapped particles would be greatly reduced.Comment: 4 pages, 5 figure

    Theory of plasmon decay in dense plasmas and warm dense matter

    Full text link
    The decay of the Langmuir waves in dense plasmas is not accurately predicted by the prevalent Landau damping theory. A dielectric function theory is introduced, predicting much higher damping than the Landau damping theory. This strong damping is in better agreement with the experimentally observed data in metals. It is shown that the strong plasmon decay leads to the existence of a parameter regime where the backward Raman scattering is unstable while the forward Raman scattering is stable. This regime may be used to create intense x-ray pulses, by means of the the backward Raman compression. The optimal pulse duration and intensity is estimated

    Photonic band gap and x-ray optics in warm dense matter

    Full text link
    Photonic band gaps for the soft x-rays, formed in the periodic structures of solids or dense plasmas, are theoretically investigated. Optical manipulation mechanisms for the soft x-rays, which are based on these band gaps, are computationally demonstrated. The reflection and amplification of the soft x-rays, and the compression and stretching of chirped soft x-ray pulses are discussed. A scheme for lasing with atoms with two energy levels, utilizing the band gap, is also studied.Comment: 3 figures, will be published on Po

    Inverter-Based Low-Voltage CCII- Design and Its Filter Application

    Get PDF
    This paper presents a negative type second-generation current conveyor (CCII-). It is based on an inverter-based low-voltage error amplifier, and a negative current mirror. The CCII- could be operated in a very low supply voltage such as ±0.5V. The proposed CCII- has wide input voltage range (±0.24V), wide output voltage (±0.24V) and wide output current range (±24mA). The proposed CCII- has no on-chip capacitors, so it can be designed with standard CMOS digital processes. Moreover, the architecture of the proposed circuit without cascoded MOSFET transistors is easily designed and suitable for low-voltage operation. The proposed CCII- has been fabricated in TSMC 0.18μm CMOS processes and it occupies 1189.91 x 1178.43μm2 (include PADs). It can also be validated by low voltage CCII filters

    Unusual persistence of superconductivity against high magnetic fields in the strongly-correlated iron-chalcogenide film FeTe:Ox_{x}

    Get PDF
    We report an unusual persistence of superconductivity against high magnetic fields in the iron chalcogenide film FeTe:Ox_{x} below ~ 2.5 K. Instead of saturating like a mean-field behavior with a single order parameter, the measured low-temperature upper critical field increases progressively, suggesting a large supply of superconducting states accessible via magnetic field or low-energy thermal fluctuations. We demonstrate that superconducting states of finite momenta can be realized within the conventional theory, despite its questionable applicability. Our findings reveal a fundamental characteristic of superconductivity and electronic structure in the strongly-correlated iron-based superconductors.Comment: 10 pages, 3 figure

    Variable frequency microwave (VFM) processing facilities and application in processing thermoplastic matrix composites

    Get PDF
    Microwave processing of materials is a relatively new technology advancement alternative that provides new approaches for enhancing material properties as well as economic advantages through energy savings and accelerated product development. Factors that hinder the use of microwaves in materials processing are declining, so that prospect for the development of this technology seem to be very promising. The two mechanisms of orientation polarisation and interfacial space charge polarisation, together with dc conductivity, form the basis of high frequency heating. Clearly, advantages in utilising microwave technologies for processing materials include penetration radiation, controlled electric field distribution and selective and volumetric heating. However, the most commonly used facilities for microwave processing materials are of fixed frequency, e.g. 2.45 GHz. This paper presents a state-of-the-art review of microwave technologies, processing methods and industrial applications, using variable frequency microwave (VFM) facilities. This is a new alternative for microwave processing

    High-temperature phase transitions in SrBi_2Ta_2O_9 film: a study by THz spectroscopy

    Full text link
    Time-domain THz transmission experiment was performed on a SrBi2Ta2O9\rm SrBi_2Ta_2O_9 film deposited on sapphire substrate. Temperatures between 300 and 923 K were investigated and complex permittivity spectra of the film were determined. The lowest frequency optic phonon near 28 cm1^{-1} reveals a slow monotonic decrease in frequency on heating with no significant anomaly near the phase transitions. We show that the dielectric anomaly near the ferroelectric phase transition can be explained by slowing down of a relaxational mode, observed in the THz spectra. A second harmonic generation signal observed in a single crystal confirms a loss of center of symmetry in the ferroelectric phase and a presence of polar clusters in the intermediate ferroelastic phase.Comment: subm. to J. Phys.: Condens. Matte

    Relevance of the Heisenberg-Kitaev model for the honeycomb lattice iridates A_2IrO_3

    Full text link
    Combining thermodynamic measurements with theoretical density functional and thermodynamic calculations we demonstrate that the honeycomb lattice iridates A2IrO3 (A = Na, Li) are magnetically ordered Mott insulators where the magnetism of the effective spin-orbital S = 1/2 moments can be captured by a Heisenberg-Kitaev (HK) model with Heisenberg interactions beyond nearest-neighbor exchange. Experimentally, we observe an increase of the Curie-Weiss temperature from \theta = -125 K for Na2IrO3 to \theta = -33 K for Li2IrO3, while the antiferromagnetic ordering temperature remains roughly the same T_N = 15 K for both materials. Using finite-temperature functional renormalization group calculations we show that this evolution of \theta, T_N, the frustration parameter f = \theta/T_N, and the zig-zag magnetic ordering structure suggested for both materials by density functional theory can be captured within this extended HK model. Combining our experimental and theoretical results, we estimate that Na2IrO3 is deep in the magnetically ordered regime of the HK model (\alpha \approx 0.25), while Li2IrO3 appears to be close to a spin-liquid regime (0.6 < \alpha < 0.7).Comment: Version accepted for publication in PRL. Additional DFT and thermodynamic calculations have been included. 6 pages of supplementary material include
    corecore