7 research outputs found

    Synthesis and optical properties of colloidal Cs 2

    No full text

    Unraveling Luminescence Quenching Mechanism in Strong and Weak Quantum-Confined CsPbBr3 Triggered by Triarylamine-Based Hole Transport Layers

    No full text
    Luminescence quenching by hole transport layers (HTLs) is one of the major issues in developing efficient perovskite light-emitting diodes (PeLEDs); particularly, it is more prominent in blue LEDs. Often, various interfacial layers are used to overcome this issue. However, the origin of such quenching and the type of interactions between perovskites and HTLs are still ambiguous. Here, we present a systematic investigation of the luminescence quenching of CsPbBr3 by a commonly employed hole transport polymer, Poly(9,9-dioctylfluorene-alt-N-(4-sec-butylphenyl)-diphenylamine) (TFB) in LEDs. Strong and weak quantum-confined CsPbBr3 (nanoplatelets (NPLs)/nanocrystals (NCs)) are rationally selected to study the quenching mechanism by considering the differences in their morphology, energy level alignments, and quantum confinement. The steady-state and time-resolved Stern-Volmer plots unravel the dominance of dynamic and static quenching at lower and higher concentrations of TFB, respectively, with maximum quenching efficiency of 98 %. The quenching rate in NCs is faster than in NPLs owing to their longer PL lifetimes and weak quantum confinement. The ultrafast transient absorption results support these dynamics and rule out the involvement of Forster or Dexter energy transfer. Finally, the 1D 1H and 2D NOESY NMR study confirms the exchange of native ligands at the NCs surface with TFB, leading to dark CsPbBr3-TFB ensemble formation accountable for luminescence quenching. This highlights the critical role of the triarylamine functional group on TFB (which is also the backbone of many HTLs) in the quenching process. These results shed light on the underlying reasons for the luminescence quenching in PeLEDs and will help to choose the interfacial layers rationally for developing efficient LEDs

    Halide mixing inhibits exciton transport in two-dimensional perovskites despite phase purity

    Full text link
    Halide mixing is one of the most powerful techniques to tune the optical bandgap of metal-halide perovskites. However, halide mixing has commonly been observed to result in phase segregation, which reduces excited-state transport and limits device performance. While the current emphasis lies on the development of strategies to prevent phase segregation, it remains unclear how halide mixing may affect excited-state transport even if phase purity is maintained. Here, we study exciton transport in phase pure mixed-halide 2D perovskites of (PEA)2Pb(I1-xBrx)4. Using transient photoluminescence microscopy, we show that, despite phase purity, halide mixing inhibits exciton transport. We find a significant reduction even for relatively low alloying concentrations. By performing Brownian dynamics simulations, we are able to reproduce our experimental results and attribute the decrease in diffusivity to the energetically disordered potential landscape that arises due to the intrinsic random distribution of alloying sitesThis work has been supported by the Spanish Ministry of Economy and Competitiveness through the “Mari ́ a de Maeztu” Program for Units of Excellence in R&D (MDM-2014-0377). M.S. acknowledges the financial support through a Doc.Mobility Fellowship from the Swiss National Science Foundation (SNF) with grant number 187676. In addition, M.S. acknowledges the financial support of a fellowship from ”la Caixa” Foundation (ID 100010434). The fellowship code is LCF/BQ/IN17/11620040. Further, M.S. has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 713673. F.P. acknowledges support from the Spanish Ministry for Science, Innovation, and Universities through the state program (PGC2018-097236-A-I00) and through the Ramón y Cajal program (RYC-2017-23253), as well as the Comunidad de Madrid Talent Program for Experienced Researchers (2016-T1/IND-1209). M.M., N.C., and R.D.B. acknowledge support from the Spanish Ministry of Economy, Industry, and Competitiveness through Grant FIS2017-86007-C3-1-P (AEI/FEDER, EU). D.N.C. acknowledges the support of the Rowland Fellowship at the Rowland Institute at Harvard University and the Department of Electrical Engineering at Stanford University. M.K.G. acknowledges the support of National Science Foundation Track 1 EPSCoR funding under the grant no. 1757220. D.A.K. acknowledges the support of a Rowland Foundation Postdoctoral Fellowshi

    State of the Art and Prospects for Halide Perovskite Nanocrystals

    No full text
    Metal-halide perovskites have rapidly emerged as one of the most promising materials of the 21st century, with many exciting properties and great potential for a broad range of applications, from photovoltaics to optoelectronics and photocatalysis. The ease with which metal-halide perovskites can be synthesized in the form of brightly luminescent colloidal nanocrystals, as well as their tunable and intriguing optical and electronic properties, has attracted researchers from different disciplines of science and technology. In the last few years, there has been a significant progress in the shape-controlled synthesis of perovskite nanocrystals and understanding of their properties and applications. In this comprehensive review, researchers having expertise in different fields (chemistry, physics, and device engineering) of metal-halide perovskite nanocrystals have joined together to provide a state of the art overview and future prospects of metal-halide perovskite nanocrystal research.ISSN:1936-0851ISSN:1936-086

    State of the art and prospects for halide perovskite nanocrystals

    Get PDF
    Metal-halide perovskites have rapidly emerged as one of the most promising materials of the 21st century, with many exciting properties and great potential for a broad range of applications, from photovoltaics to optoelectronics and photocatalysis. The ease with which metal-halide perovskites can be synthesized in the form of brightly luminescent colloidal nanocrystals, as well as their tunable and intriguing optical and electronic properties, has attracted researchers from different disciplines of science and technology. In the last few years, there has been a significant progress in the shape-controlled synthesis of perovskite nanocrystals and understanding of their properties and applications. In this comprehensive review, researchers having expertise in different fields (chemistry, physics, and device engineering) of metal-halide perovskite nanocrystals have joined together to provide a state of the art overview and future prospects of metal-halide perovskite nanocrystal research.Financiado para publicación en acceso aberto: Universidade de Vigo/CISUGMinisterio de Ciencia e Innovación | Ref. RYC2018-026103-IAgencia Estatal de Investigación | Ref. CTQ2017-82711-PMinisterio de Economía y Competitividad | Ref. MDM-2015-0538Agencia Estatal de Investigación | Ref. PID2019-107314RB-I0
    corecore