18 research outputs found
A roadmap to integrate astrocytes into Systems Neuroscience.
Systems neuroscience is still mainly a neuronal field, despite the plethora of evidence supporting the fact that astrocytes modulate local neural circuits, networks, and complex behaviors. In this article, we sought to identify which types of studies are necessary to establish whether astrocytes, beyond their well-documented homeostatic and metabolic functions, perform computations implementing mathematical algorithms that sub-serve coding and higher-brain functions. First, we reviewed Systems-like studies that include astrocytes in order to identify computational operations that these cells may perform, using Ca2+ transients as their encoding language. The analysis suggests that astrocytes may carry out canonical computations in a time scale of subseconds to seconds in sensory processing, neuromodulation, brain state, memory formation, fear, and complex homeostatic reflexes. Next, we propose a list of actions to gain insight into the outstanding question of which variables are encoded by such computations. The application of statistical analyses based on machine learning, such as dimensionality reduction and decoding in the context of complex behaviors, combined with connectomics of astrocyte-neuronal circuits, is, in our view, fundamental undertakings. We also discuss technical and analytical approaches to study neuronal and astrocytic populations simultaneously, and the inclusion of astrocytes in advanced modeling of neural circuits, as well as in theories currently under exploration such as predictive coding and energy-efficient coding. Clarifying the relationship between astrocytic Ca2+ and brain coding may represent a leap forward toward novel approaches in the study of astrocytes in health and disease
A roadmap to integrate astrocytes into Systems Neuroscience
Systems Neuroscience is still mainly a neuronal field, despite the plethora of evidence supporting the fact that astrocytes modulate local neural circuits, networks, and complex behaviors. In this article, we sought to identify which types of studies are necessary to establish whether astrocytes, beyond their well-documented homeostatic and metabolic functions, perform computations implementing mathematical algorithms that sub-serve coding and higher-brain functions. First, we reviewed Systems-like studies that include astrocytes in order to identify computational operations that these cells may perform, using Ca transients as their encoding language. The analysis suggests that astrocytes may carry out canonical computations in time scales of sub-seconds to seconds in sensory processing, neuromodulation, brain state, memory formation, fear, and complex homeostatic reflexes. Next, we propose a list of actions to gain insight into the outstanding question of which variables are encoded by such computations. The application of statistical analyses based on machine learning, such as dimensionality reduction and decoding in the context of complex behaviors, combined with connectomics of astrocyte-neuronal circuits, are, in our view, fundamental undertakings. We also discuss technical and analytical approaches to study neuronal and astrocytic populations simultaneously, and the inclusion of astrocytes in advanced modeling of neural circuits, as well as in theories currently under exploration, such as predictive coding and energy-efficient coding. Clarifying the relationship between astrocytic Ca and brain coding may represent a leap forward towards novel approaches in the study of astrocytes in health and disease.Junior Leader Fellowhip Program by 'la Caixa' Banking Foundation, LCF/BQ/LI18/11630006
BFU2017-85936-P
BFU2016-75107-P
BFU2016-79735-P
FLAGERA-PCIN-2015-162-C02-02
HHMI 55008742
FPU13/05377
NIH R01NS099254
NSF 1604544
Agència de Gestio d’Ajuts Universitaris i de Recerca, 2017 SGR54
Recommended from our members
Novel botanical drug DA-9803 prevents deficits in Alzheimer’s mouse models
Background: Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by deposition of amyloid plaques and disruption of neural circuitry, leading to cognitive decline. Animal models of AD deposit senile plaques and exhibit structural and functional deficits in neurons and neural networks. An effective treatment would prevent or restore these deficits, including calcium dyshomeostasis observed with in-vivo imaging. Methods: We examined the effects of DA-9803, a multimodal botanical drug, in 5XFAD and APP/PS1 transgenic mice which underwent daily oral treatment with 30 or 100 mg/kg DA-9803 or vehicle alone. Behavioral testing and longitudinal imaging of amyloid deposits and intracellular calcium in neurons with multiphoton microscopy was performed. Results: Chronic administration of DA-9803 restored behavioral deficits in 5XFAD mice and reduced amyloid-β levels. DA-9803 also prevented progressive amyloid plaque deposition in APP/PS1 mice. Elevated calcium, detected in a subset of neurons before the treatment, was restored and served as a functional indicator of treatment efficacy in addition to the behavioral readout. In contrast, mice treated with vehicle alone continued to progressively accumulate amyloid plaques and calcium overload. Conclusions: In summary, treatment with DA-9803 prevented structural and functional outcome measures in mouse models of AD. Thus, DA-9803 shows promise as a novel therapeutic approach for Alzheimer’s disease. Electronic supplementary material The online version of this article (10.1186/s13195-018-0338-2) contains supplementary material, which is available to authorized users
Recommended from our members
An acute functional screen identifies an effective antibody targeting amyloid-β oligomers based on calcium imaging
Soluble amyloid β oligomers (AβOs) are widely recognized neurotoxins that trigger aberrant signaling in specific subsets of neurons, leading to accumulated neuronal damage and memory disorders in Alzheimer’s disease (AD). One of the profound downstream consequences of AβO-triggered events is dysregulation of cytosolic calcium concentration ([Ca2+]i), which has been implicated in synaptic failure, cytoskeletal abnormalities, and eventually neuronal death. We have developed an in vitro/in vivo drug screening assay to evaluate putative AβO-blocking candidates by measuring AβO-induced real-time changes in [Ca2+]i. Our screening assay demonstrated that the anti-AβO monoclonal antibody ACU3B3 exhibits potent blocking capability against a broad size range of AβOs. We showed that picomolar concentrations of AβOs were capable of increasing [Ca2+]i in primary neuronal cultures, an effect prevented by ACU3B3. Topical application of 5 nM AβOs onto exposed cortical surfaces also elicited significant calcium elevations in vivo, which was completely abolished by pre-treatment of the brain with 1 ng/mL (6.67 pM) ACU3B3. Our results provide strong support for the utility of this functional screening assay in identifying and confirming the efficacy of AβO-blocking drug candidates such as the human homolog of ACU3B3, which may emerge as the first experimental AD therapeutic to validate the amyloid oligomer hypothesis
Recommended from our members
Optogenetic Restoration of Disrupted Slow Oscillations Halts Amyloid Deposition and Restores Calcium Homeostasis in an Animal Model of Alzheimer’s Disease
Slow oscillations are important for consolidation of memory during sleep, and Alzheimer’s disease (AD) patients experience memory disturbances. Thus, we examined slow oscillation activity in an animal model of AD. APP mice exhibit aberrant slow oscillation activity. Aberrant inhibitory activity within the cortical circuit was responsible for slow oscillation dysfunction, since topical application of GABA restored slow oscillations in APP mice. In addition, light activation of channelrhodopsin-2 (ChR2) expressed in excitatory cortical neurons restored slow oscillations by synchronizing neuronal activity. Driving slow oscillation activity with ChR2 halted amyloid plaque deposition and prevented calcium overload associated with this pathology. Thus, targeting slow oscillatory activity in AD patients might prevent neurodegenerative phenotypes and slow disease progression
Recommended from our members
Pathogenic PS1 phosphorylation at Ser367
The high levels of serine (S) and threonine (T) residues within the Presenilin 1 (PS1) N-terminus and in the large hydrophilic loop region suggest that the enzymatic function of PS1/γ-secretase can be modulated by its ‘phosphorylated’ and ‘dephosphorylated’ states. However, the functional outcome of PS1 phosphorylation and its significance for Alzheimer’s disease (AD) pathogenesis is poorly understood. Here, comprehensive analysis using FRET-based imaging reveals that activity-driven and Protein Kinase A-mediated PS1 phosphorylation at three domains (domain 1: T74, domain 2: S310 and S313, domain 3: S365, S366, and S367), with S367 being critical, is responsible for the PS1 pathogenic ‘closed’ conformation, and resulting increase in the Aβ42/40 ratio. Moreover, we have established novel imaging assays for monitoring PS1 conformation in vivo, and report that PS1 phosphorylation induces the pathogenic conformational shift in the living mouse brain. These phosphorylation sites represent potential new targets for AD treatment. DOI: http://dx.doi.org/10.7554/eLife.19720.00
Recommended from our members
Cerebrospinal fluid amyloid-β 42/40 ratio in clinical setting of memory centers: a multicentric study
Introduction: The cerebrospinal fluid (CSF) biomarkers amyloid-β (Aβ), tau and phosphorylated tau (p-tau181) are now used for the diagnosis of Alzheimer’s disease (AD). Aβ40 is the most abundant Aβ peptide isoform in the CSF, and the Aβ 42/40 ratio has been proposed to better reflect brain amyloid production. However, its additional value in the clinical setting remains uncertain. Methods: A total of 367 subjects with cognitive disorders who underwent a lumbar puncture were prospectively included at three French memory centers (Paris-North, Lille and Montpellier; the PLM Study). The frequency of positive, negative and indeterminate CSF profiles were assessed by various methods, and their adequacies with the diagnosis of clinicians were tested using net reclassification improvement (NRI) analyses. Results: On the basis of local optimum cutoffs for Aβ42 and p-tau181, 22% of the explored patients had indeterminate CSF profiles. The systematic use of Aβ 42/40 ratio instead of Aβ42 levels alone decreased the number of indeterminate profiles (17%; P = 0.03), but it failed to improve the classification of subjects (NRI = −2.1%; P = 0.64). In contrast, the use of Aβ 42/40 ratio instead of Aβ42 levels alone in patients with a discrepancy between p-tau181 and Aβ42 led to a reduction by half of the number of indeterminate profiles (10%; P < 0.001) and was further in agreement with clinician diagnosis (NRI = 10.5%; P = 0.003). Conclusions: In patients with a discrepancy between CSF p-tau181 and CSF Aβ42, the assessment of Aβ 42/40 ratio led to a reliable biological conclusion in over 50% of cases that agreed with a clinician’s diagnosis. Electronic supplementary material The online version of this article (doi:10.1186/s13195-015-0114-5) contains supplementary material, which is available to authorized users
Decrease in GABA<sub>B</sub> expression in APP mice.
<p>GABA<sub>B</sub> immunoreactivity in the somatosensory cortex of a 4 month old wildtype littermate control mouse (<b>A</b>), and a 4 month old APP mouse (<b>B</b>). B represents an extreme case. (<b>C</b>) Bar graph comparing GABA<sub>B</sub> immunoreactivity between conditions as a percentage of wildtype level at 4 months (n = 3–4 mice/group, p≤0.001). (<b>D</b>) Slow oscillation power (normalized to wildtype) and (<b>E</b>) mean slow oscillation frequency before (baseline) and after 50 μM saclofen application to the brain of wildtype mice (n = 4 mice). (<b>F</b>) Slow oscillation power (normalized to wildtype) and (<b>G</b>) mean slow oscillation frequency before (baseline) and after 50 μM saclofen application to the brain of APP mice (n = 6 mice). Scale bar, 30 μm. * p<0.05, *** p≤0.001.</p
Decrease in GABA<sub>A</sub> immunoreactivity in APP mice.
<p>GABA<sub>A</sub> immunoreactivity in the somatosensory cortex of a 4 month old wildtype littermate control mouse (<b>A</b>), and a 4 month old APP mouse (<b>B</b>). (<b>C</b>) Bar graph comparing intensity of GABA<sub>A</sub> immunoreactivity between conditions as a percentage of wildtype level at 4 months (n = 3–4 mice/group). (<b>D</b>) Voltage-sensitive dye traces showing a decrease in power of slow oscillations 60 minutes after topical application of 50 μM picrotoxin to a 4 month old wildtype mouse brain. (<b>E</b>) Slow oscillation power (normalized to wildtype) and (<b>F</b>) mean slow oscillation frequency before (WT baseline) and after picrotoxin (PTX) application to brains of 2–4 month old wildtype mice (n = 4 mice). (<b>G</b>) Slow oscillation power (normalized to APP) and (<b>H</b>) mean slow oscillation frequency before (APP baseline) and after picrotoxin (PTX) application to brains of 2–4 month old APP mice (n = 4 mice). Scale bar, 50 μm. * p<0.05, *** p≤0.001.</p