19 research outputs found

    Nine-Axis IMU sensor fusion using the AHRS algorithm and neural networks

    Get PDF
    This paper presents data processing method for Attitude Heading and Reference System (AHRS) based on Artificial Neural Networks (ANN). The system consist of MEMS (Micro Electro-Mechanical Systems) based on Inertial Measurement Unit (IMU) consisting of tri-axis gyroscopes, accelerometers and magnetometers providing three dimensional linear accelerations and angular rates. Training data was generated by simulation fusion of samples collected during the flight of Quadcopter. The presented results shows proper functioning of the neural network. Moreover, the presented system provide the possibility to easily add other sensors e.g. GPS, in order to achieve better performance

    URBAN PUBLIC TRANSPORT WITH THE USE OF ELECTRIC BUSES – DEVELOPMENT TENDENCIES

    Get PDF
    Summary. The programing documents of the European Union determine the direction of transport systems development, including large cities and agglomerations. The context of these actions which aim to transform into ecologically clean and sustainable transport system is a significant reduction of greenhouse gas emissions. Assuming that public transport will significantly reduce the use of combustion-powered buses, studies on urban logistic enabling the use of electric buses for public transport are needed. The article presents the variants and scenarios for electric buses implementation in urban public transport, as well as the decision algorithm to support electric bus implementation based on technological, organisational, economic and ecological variables

    Solvent-Impregnated Sorbents for Tantalum from Niobium Separation Using a Fixed-Bed Column

    No full text
    Reactor-grade niobium steel is used as a construction material for nuclear reactors. In this case, the presence of tantalum, which is characterized by a 20 times higher active cross section for capturing thermal neutrons than the cross section of niobium (181Ta: 21.3 barn), cannot exceed 100 ppm. Analytical methods for quality and new separation method development control need very pure niobium matrices—niobium compounds with a low tantalum content, which are crucial for preparing matrix reference solutions or certified reference materials (CRMs). Therefore, in this paper, a new, efficient method for separating trace amounts of Ta(V) from Nb(V) using extraction chromatography with the use of sorbents impregnated with methyl isobutyl ketone MIBK solvent is proposed. Various types of MIBK-impregnated sorbents were used (AG® 1-X8 Anion Exchange Resin, AMBERLITE™ IRC120 Na Ion Exchange Resin, SERVACEL® Cellulose Anion Exchangers DEAE 52, active carbons of various grain size, carbonized blackcurrant pomace, carbonized chokeberry pomace, bentonite, and polyurethane foam in lumps). The highest tantalum removal efficiency was determined using active coal-based materials (>97%). The separation effectivity of tantalum from niobium was also determined in dynamic studies using a fixed-bed column with MIBK-impregnated active carbon. Solutions of various Nb:Ta weight ratios (1:1, 100:1, 1000:1) were used. The most impressive result was obtaining 70 mL of high purity niobium solution of tantalum content 0.027 ppm (in relation to Nb) with 88.4% yield of niobium from a solution of Nb:Ta, weight ratio 1000:1 (purge factor equaled 35,000). It proves the presented system to be applicable for preparation of pure niobium compounds with very low contents of tantalum

    Long Term and Large-Scale Continuous Studies on Zinc(II) Sorption and Desorption on Hybrid Pectin-Guar Gum Biosorbent

    No full text
    Pectin-guar gum biosorbent was tested for zinc(II) ions removal in column process. Sorption–desorption experiments were performed in laboratory and at larger scale. The breakthrough and elution curves were obtained for various conditions. The Bed Depth Service Time model was tested for utility in data estimation. Possibility of sorbent reuse and its lifetime was examined in 20 repeated sorption–desorption cycles. Finally, tests were repeated for real wastewater from galvanizing plant, giving satisfactory results. The effectiveness of Zn(II) sorption happened to be dependent on process parameters; tests have proved that it increased with increasing bed height and with decreasing flow rate or grain size. For an initial zinc concentration of 30 mg/L, even 2096 mL of zinc solution could be purified in small scale experiment (2 g of fine grain sorbent and flow rate 60 mL/h) or 5900 L in large-scale (16 kg of large grain sorbent and flow rate 45 L/h). This allowed for 40-fold or 49-fold zinc increases in concentration in one sorption–desorption cycle. The most successful results are meant that at least 20 sorption–desorption cycles could be performed on one portion of biosorbent without loss of its effectiveness, large-scale tests for real wastewater from galvanizing plant gave satisfactory results, and that the form and mechanical stability of our sorbent is suitable for column usage with flow rates applicable in industry

    Hybrid Pectin-Based Sorbents for Cesium Ion Removal

    No full text
    In this paper, beads-shaped hybrid sorbents composed of pectin and Prussian blue were prepared. Various ratios of pectin and Prussian blue in hybrid sorbents were tested. Obtained sorbents had high and roughly constant sorption capacity in a broad pH range (4–10), in which also the swelling index and stability of sorbents were satisfactory. The preliminary sorption studies proved that almost 100% of cesium removal efficiency may be achieved by using the proper sorbent dose. The sorption capacity of the hybrid sorbent with a 1:1 ratio of pectin to Prussian blue equaled q = 36.5 ± 0.8 mg/g (dose 3 g/L, pH = 6, temp. = 22 ± 1 °C, t = 24 h). The obtained results showed that the prepared hybrid pectin-based sorbents are promising for cesium ions removal

    A Method for Determination of Metals in Hybrid Metal Oxide/Metal-Carbon Nanotubes Catalysts

    No full text
    Carbon nanotubes (CNTs), due to their special structure and unique properties, are still one of the most interesting materials for scientists. Recently, carbon nanotubes were proposed as a new type of carbon support for catalysts. Fe, Pt, Ni, Co, and other metals anchored to CNTs are used in various reactions. Due to the fact that production processes are usually unpredictable and the total amount of metal/metal oxide deposited on the CNTs may only be estimated, the methods for examining the chemical composition are necessary. In this study, fast and simple inductively coupled plasma atomic emission spectrometry (ICP-AES) with slurry nebulization was proposed for metal content determination in hybrid CeZrO2/CNT, Ni-CeZrO2/CNT, and Ni/CNT materials. Slurries were prepared by 30 min ultrasonication of appropriate amount of investigated material in 1% Triton X-100 solution. Optimal range of slurry concentration and optimal RF plasma power were established (40–400 mg L−1, 1.2 kW, resp.). Obtained results proved that this method may be applied for determination of Ce, Zr, and Ni in hybrid CNT-based materials

    Time synchronization in distributed sensor network

    Get PDF
    Time synchronization in a distributed sensor network is a key issue. Data from the sensors are properly synchronized are very good material for further analysis. In the paper a network of medical sensors is presented. It is important to obtain a properly synchronized data from the sensors. This guarantee that the data can be processed to detect correlation between different signals. For the purpose of accurate time synchronization, the simple and efficient algorithm is presented
    corecore