8 research outputs found

    Developmental toxicity of N-methylaniline following prenatal oral administration in rats

    Full text link
    Objectives: The objective of the study was to assess prenatal toxicity of N-methylaniline (NMA) administered by gavage to pregnant female rats. Material and Methods: Pregnant female rats were administered N-methylaniline in corn oil by gavage at daily doses of 0.8 mg/kg of body weight (b.w.), 4 mg/kg b.w., 20 mg/kg b.w. and 100 mg/kg b.w. from implantation (the 5th day post mating) to the day prior to the scheduled caesarean section (the 20th day of pregnancy). General behavior, body weight, food and water consumption, hematological, biochemical analyses and pathomorphological changes of the dams were recorded. Results: All the females survived until the end of the study. The test substance was toxic to pregnant females, even at the lowest of the used doses, i.e., 0.8 mg/kg b.w./day. Lower weight gain during pregnancy and significantly higher NMA-dose-dependent absolute weight of the organs were noted in the exposed females. The females from the groups exposed at doses of 20 mg/kg b.w./day and 100 mg/kg b.w./day developed anemia and showed higher concentrations of free thyroxine (FT3) and free triiodothyronine (FT4) thyroid hormones. Total protein concentration exhibited an increase in all the exposed groups of females. In the prenatal toxicity study, administration of N-methylaniline throughout the embryonic and fetal periods produced embryotoxic effects at doses ranging 4–100 mg/kg b.w./day. Conclusions: Considering the data obtained in this study, it is reasonable to assume that N-methylaniline administered orally to pregnant rats is toxic for mothers even at a low dose of 0.8 mg/kg b.w./day. However, this dose was not associated with any significant effects to their offspring. This prenatal exposure level may be considered as no-observed-adverse-effect level (NOAEL) for the progeny and a dose of 4 mg/kg b.w./day as the lowest-observed-adverse-effect level (LOAEL) for the progeny

    The effect of prenatal exposure on disposition of hexachloronaphthalene in female Wistar rats and fetal compartment

    No full text
    Objectives Due to structural and toxicological similarities to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), polychlorinated naphthalenes (PCNs) were included in the Stockholm Convention on Persistent Organic Pollutants (POPs) in 2015. Hexachloronaphthalene (HxCN) is considered to be one of the most toxic congeners of PCNs. The objective of this study was to determine the maternal and fetal tissue concentrations of hexachloronaphthalene after a single administration. Material and Methods Pregnant female Outbred Wistar rats were used for the study. The [ 14 C]-HxCN was administered in a single oral dose of 0.3 mg/rat (150 kBq/rat) on gestational day 17 (GD17), GD18 or GD19. All dams were sacrificed on GD20. The blood and selected tissue samples taken from mothers and fetuses 24 h, 48 h or 72 h after exposure were evaluated for the distribution of HxCN. Results Maximum concentrations of HxCN in pregnant rats were found in the liver and adipose tissue. Relatively high levels of HxCN were also reported in the spleen, ovaries, adrenal glands and uterus, as well as in the sciatic nerve, brain and kidneys. Hexachloronaphthalene penetrates through the blood-brain barrier (BBB), as evidenced by twice the concentration in the brain compared to the blood concentration, and through the placental barrier, as indicated by the level of maternal-fetal compartment (placenta, amniotic fluid, litter). Among the examined fetal tissues, the highest levels of HxCN were found in the kidneys and in the brain. The concentrations in these organs were higher than that found in the maternal blood. Conclusions This paper is the first to detail the concentrations of HxCN in the maternal tissues and the transplacental transfer of the tested compound to the fetuses. The exposure of pregnant rats to HxCN results in its accumulation in the maternal liver, fat tissue, reproductive and nervous system, and particularly in the fetal brain. This demonstrates both the effective absorption and significant systemic accumulation which could lead to negative health implications. Int J Occup Med Environ Health 2018;31(5):685–69

    Porównawcze badanie bezpieczeństwa (ostra toksyczność ogólnoustrojowa u myszy) dwóch materiałów przygotowanych z dzianiny/plecionki polipropylenowo-poliestrowej (Codubix S) oraz żywicy akrylowej (Mendec Cranio) wykorzystywanych do produkcji protez

    No full text
    The aim of the study was a comparison of the acute toxicity of two popular prostheses used in the reconstruction of the bones of the skull. For the tests, the following materials were used: a polypropylene-polyester knitted Codubix S cranial bone prosthesis, made by TRICOMED SA, and polymethyl methacrylate Mednec Cranio resin. The tests were carried out in accordance with the following standards – PN-EN ISO 10993-11:2009 Biological evaluation of medical devices - Part 11: Tests for systemic toxicity, and PN-EN ISO 10993-12:2012 Biological evaluation of medical devices – Part 12: Sample preparation and reference materials. During the evaluation, adult male and female Balb/c mice were used. The animals were injected intravenously using extracts of both materials in 0.9% NaCl and intraperitoneally with the same extracts in sesame oil. The tests lasted 7 days, during which the health of the animals and their behavior were assessed. Both in the control and test groups, there was no mortality of the animals, and the health and behaviour of mice were unchanged when compared with the normal. After 7 days the internal organs of the chest and abdominal cavity of the animals were subjected to macroscopic pathomorphological examination, during which no changes indicating the toxic action of Codubix S and Mednec Cranio resin were found. Before the acute systemic toxicity tests, the chemical purity of both implants was assessed. The chemical purity of a product is one of the factors determining its biological properties. A product which is characterised by a higher degree of chemical purity contains fewer substances which may have a negative impact on biological reactions. Both prostheses meet the requirements of purity for medical devices.Celem badania było porównanie toksyczności ostrej dwóch popularnych protez stosowanych w konstrukcji kości czaszki. Do badań użyto następujących materiałów: dzianiny polipropylenowo-poliestrowej Codubix S firmy TRICOMEX SA. I polimetakrylanu metylu Mednec Cranio. Badania przeprowadzono zgodnie z następującymi normami PN-EN ISO 10993-11: 2009 Biologiczna ocena wyrobów medycznych. Część 11: Badania toksyczności systemowej i PN-EN ISO 10993-12: 2012 Biologiczna ocena wyrobów medycznych Część 12: Przygotowanie próbek i materiały referencyjne. Podczas oceny wykorzystano dorosłe samce i samice myszy Balb /c. Zwierzętom wstrzyknięto: dożylnie stosując ekstrakty obu materiałów w 0,9% NaCl i dootrzewnowo z tymi samymi ekstraktami w oleju sezamowym. Testy trwały 7 dni, podczas których oceniano zdrowie zwierząt i ich zachowanie. Zarówno w grupach kontrolnych, jak i testowych nie stwierdzono śmiertelności zwierząt, zdrowie i zachowanie myszy pozostały nie zmienione w porównaniu ze zwykłymi. Po 7 dniach narządy wewnętrzne klatki piersiowej i jamy brzuszne j zwierząt poddano makroskopowemu badaniu patomorfologicznemu, podczas którego nie stwierdzono zmian wskazujących na toksyczne działanie żywicy Codubix S i Mednec Cranio. Przed badaniami ostrej toksyczności ogólnoustrojowej oceniano czystość chemiczną obu implantów. Chemiczna czystość produktu jest jednym z czynników określających jego właściwości biologiczne. Produkt, który charakteryzuje się wyższym stopniem czystości chemicznej, zawiera mniej substancji, które mogą mieć negatywny wpływ na reakcje biologiczne. Obie protezy spełniają wymagania czystości dla wyrobów medycznych

    Fertility and developmental toxicity studies of diethylene glycol monobutyl ether (DGBE) in rats

    No full text
    Objectives The solvent, dimethylene glycol monobutyl ether (DGBE), is a component of latex paints, inks; it is used as a degreasing agent, industrial detergent. The aim of the study was evaluating the effects of DGBE administered by gavage on the estrous cycle and given with drinking water on fertility in rats and early development of their progeny. Materials and Methods Female rats were exposed to DGBE by gavage during 8 weeks at 250, 500 or 1000 mg/kg/day. Vaginal smears were collected during the exposure and 4 weeks after its cessation. Fertility studies were performed in male and female animals exposed to in drinking water. Males were exposed for 10 weeks and then mated with females exposed before mating, during pregnancy and lactation. Young animals were observed during 3 weeks after birth. Results DGBE does not cause disturbances of the menstrual cycle in females. Parameters used to assess the general toxicity indicate that males receiving DGBE in drinking water are more sensitive to this compound than females: significantly greater, dose-dependent relative spleen weight, significant decrease in hematological parameters from 8% to 15% depending on the dose, were observed. Clinical chemistry parameters (HDL-cholesterol, BUN) and some markers of oxidative stress differ between the exposed groups and the control one, but without adverse health effect. The microscopic examination of internal organs did not reveal morphological changes in male and female rats. Conclusion The results of our study on the impact of exposure to DGBE on fertility in rats indicate that the substance administered for 9–10 weeks to females and males at a limit dose of 1000 mg/kg did not impair fertility or viability of their offspring during the first three weeks of life

    Developmental toxicity of N-methylaniline following prenatal oral administration in rats

    No full text
    Objectives: The objective of the study was to assess prenatal toxicity of N-methylaniline (NMA) administered by gavage to pregnant female rats. Material and Methods: Pregnant female rats were administered N-methylaniline in corn oil by gavage at daily doses of 0.8 mg/kg of body weight (b.w.), 4 mg/kg b.w., 20 mg/kg b.w. and 100 mg/kg b.w. from implantation (the 5th day post mating) to the day prior to the scheduled caesarean section (the 20th day of pregnancy). General behavior, body weight, food and water consumption, hematological, biochemical analyses and pathomorphological changes of the dams were recorded. Results: All the females survived until the end of the study. The test substance was toxic to pregnant females, even at the lowest of the used doses, i.e., 0.8 mg/kg b.w./day. Lower weight gain during pregnancy and significantly higher NMA-dose-dependent absolute weight of the organs were noted in the exposed females. The females from the groups exposed at doses of 20 mg/kg b.w./day and 100 mg/kg b.w./day developed anemia and showed higher concentrations of free thyroxine (FT3) and free triiodothyronine (FT4) thyroid hormones. Total protein concentration exhibited an increase in all the exposed groups of females. In the prenatal toxicity study, administration of N-methylaniline throughout the embryonic and fetal periods produced embryotoxic effects at doses ranging 4–100 mg/kg b.w./day. Conclusions: Considering the data obtained in this study, it is reasonable to assume that N-methylaniline administered orally to pregnant rats is toxic for mothers even at a low dose of 0.8 mg/kg b.w./day. However, this dose was not associated with any significant effects to their offspring. This prenatal exposure level may be considered as no-observed-adverse-effect level (NOAEL) for the progeny and a dose of 4 mg/kg b.w./day as the lowest-observed-adverse-effect level (LOAEL) for the progeny
    corecore