17 research outputs found

    Divergent Contributions of Conserved Active Site Residues to Transcription by Eukaryotic RNA Polymerases I and II

    Get PDF
    Multisubunit RNA polymerases (msRNAPs) exhibit high sequence and structural homology, especially within their active sites, which is generally thought to result in msRNAP functional conservation. However, we show that mutations in the trigger loop (TL) in the largest subunit of RNA polymerase I (Pol I) yield phenotypes unexpected from studies of Pol II. For example, a well-characterized gain-of-function mutation in Pol II results in loss of function in Pol I (Pol II: rpb1- E1103G; Pol I: rpa190-E1224G). Studies of chimeric Pol II enzymes hosting Pol I or Pol III TLs suggest that consequences of mutations that alter TL dynamics are dictated by the greater enzymatic context and not solely the TL sequence. Although the rpa190-E1224G mutation diminishes polymerase activity, when combined with mutations that perturb Pol I catalysis, it enhances polymerase function, similar to the analogous Pol II mutation. These results suggest that Pol I and Pol II have different rate-limiting steps

    Direct Characterization of Transcription Elongation by RNA Polymerase I

    No full text
    <div><p>RNA polymerase I (Pol I) transcribes ribosomal DNA and is responsible for more than 60% of transcription in a growing cell. Despite this fundamental role that directly impacts cell growth and proliferation, the kinetics of transcription by Pol I are poorly understood. This study provides direct characterization of <i>S</i>. <i>Cerevisiae</i> Pol I transcription elongation using tethered particle microscopy (TPM). Pol I was shown to elongate at an average rate of approximately 20 nt/s. However, the maximum speed observed was, in average, about 60 nt/s, comparable to the rate calculated based on the <i>in vivo</i> number of active genes, the cell division rate and the number of engaged polymerases observed in EM images. Addition of RNA endonucleases to the TPM elongation assays enhanced processivity. Together, these data suggest that additional transcription factors contribute to efficient and processive transcription elongation by RNA polymerase I <i>in vivo</i>.</p></div

    DNA and protein components.

    No full text
    <p>A diagram (not to scale) of the rDNA elements and proteins used in the transcription assays reported here (top). A diagram of the chromosomal context of the rDNA fragment used in the TPM measurements of RNA Pol I elongation (bottom). Note that since Pol I only transcribes rDNA, the DNA tether selected for our experiments was a portion of the natural Pol I template.</p

    Pol I elongation rates.

    No full text
    <p>The average rate (a) was calculated from the beginning to the end of each elongation run. The maximum rate (b) in each of the 65 traces was found as described in the Materials and Methods, “Particle Tracking and Transcription Rate Analysis.” The distributions of (a) and (b) were then fitted with exponential functions with mean values of 20.7 (average) and 58.4 (maximum) nt/s rates of elongation (R-values of 0.95 and 0.98 respectively). These mean values are significantly different with respective 95% confidence intervals of (14.1–27.3) and (48.6–68.4) relative to the fitted mean values. Note that for an exponential distribution, the standard deviation is equal to the mean.</p

    Pol I processivity measured by TPM.

    No full text
    <p>Elongation complexes arrested after transcribing different distances along the DNA template, with only seven out of sixty-five complexes reaching the expected run-off site and releasing DNA. The percentage of elongation complexes that reached a given position along the template is plotted for single molecule experiments with (purple) or without (gold) added RNAse. Note that position 556 corresponds to the halt site and 2444 nucleotides can be transcribed before runoff at position 2500.</p
    corecore