80 research outputs found
Advanced detectors and signal processing
Continued progress is reported toward development of a silicon on garnet technology which would allow fabrication of advanced detection and signal processing circuits on bubble memories. The first integrated detectors and propagation patterns have been designed and incorporated on a new mask set. In addition, annealing studies on spacer layers are performed. Based on those studies, a new double layer spacer is proposed which should reduce contamination of the silicon originating in the substrate. Finally, the magnetic sensitivity of uncontaminated detectors from the last lot of wafers is measured. The measured sensitivity is lower than anticipated but still higher than present magnetoresistive detectors
Quantitative Observation of Magnetic Flux Distribution in New Magnetic Films for Future High Density Recording Media
International audienceOff-axis electron holography was used to observe and quantify the magnetic microstructure of a perpendicular magnetic anisotropic (PMA) recording media. Thin foils of PMA materials exhibit an interesting up and down domain configuration. These domains are found to be very stable and were observed at the same time with their stray field, closing magnetic flux in the vacuum. The magnetic moment can thus be determined locally in a volume as small as few tens of cubic nanometers
Is international agricultural research a global public good? : The case of rice biofortification
The status of international agricultural research as a global public good (GPG) has been widely accepted since the Green Revolution of the 1960s and 1970s. While the term was not used at the time of its creation, the Consultative Group on International Agricultural Research (CGIAR) system that evolved at that time has been described as a 'prime example of the promise, performance and perils of an international approach to providing GPGs'. Contemporary literature on international agricultural research as a GPG tends to support this view and focuses on how to operationalize the concept. This paper adopts a different starting point and questions this conceptualization of the CGIAR and its outputs. It questions the appropriateness of such a 'neutral' concept to a system born of the imperatives of Cold War geopolitics, and shaped by a history of attempts to secure its relevance in a changing world. This paper draws on a multi-sited, ethnographic study of a research effort highlighted by the CGIAR as an exemplar of GPG-oriented research. Behind the ubiquitous language of GPGs, 'partnership' and 'consensus', however, new forms of exclusion and restriction are emerging within everyday practice, reproducing North-South inequalities and undermining the ability of these programmes to respond to the needs of projected beneficiaries
Influence of calcination temperature on structural and magnetic properties of nanocomposites formed by Co-ferrite dispersed in sol-gel silica matrix using tetrakis(2-hydroxyethyl) orthosilicate as precursor
Effects of calcination temperatures varying from 400 to 1000°C on structural and magnetic properties of nanocomposites formed by Co-ferrite dispersed in the sol-gel silica matrix using tetrakis(2-hydroxyethyl) orthosilicate (THEOS) as water-soluble silica precursor have been investigated. Studies carried out using XRD, FT-IR, TEM, STA (TG-DTG-DTA) and VSM techniques. Results indicated that magnetic properties of samples such as superparamagnetism and ferromagnetism showed great dependence on the variation of the crystallinity and particle size caused by the calcination temperature. The crystallization, saturation magnetization Ms and remenant magnetization Mr increased as the calcination temperature increased. But the variation of coercivity Hc was not in accordance with that of Ms and Mr, indicating that Hc is not determined only by the crystallinity and size of CoFe2O4 nanoparticles. TEM images showed spherical nanoparticles dispersed in the silica network with sizes of 10-30 nm. Results showed that the well-established silica network provided nucleation locations for CoFe2O4 nanoparticles to confinement the coarsening and aggregation of nanoparticles. THEOS as silica matrix network provides an ideal nucleation environment to disperse CoFe2O4 nanoparticles and thus to confine them to aggregate and coarsen. By using THEOS as water-soluble silica precursor over the currently used TEOS and TMOS, the organic solvents are not needed owing to the complete solubility of THEOS in water. Synthesized nanocomposites with adjustable particle sizes and controllable magnetic properties make the applicability of Co-ferrite even more versatile
Quantitative model for tunable microstructure in magnetic FePt thin films by pulsed laser deposition
Granular metal films as recording media
High-density recording media require materials with a high magnetization and high coercivity as well as chemical stability, wear, and corrosion resistance. We explore the potential of granular metal films for recording media. Films of Fe granules about 150 Ă
in size embedded in an amorphous SiO2 matrix exhibit coercivities as high as 3 kOe at low temperatures and 1.1 kOe at room temperature, and magnetizations of about 150 emu/g. The methods with which these materials are fabricated, the essential microstructure characterization, and magnetic measurements are described
- âŠ