28 research outputs found
Magnetic-crystallographic phase diagram of superconducting parent compound FeTe
hrough neutron diffraction experiments, including spin-polarized
measurements, we find a collinear incommensurate spin-density wave with
propagation vector () at base
temperature in the superconducting parent compound FeTe. This critical
concentration of interstitial iron corresponds to and leads
crystallographic phase separation at base temperature. The spin-density wave is
short-range ordered with a correlation length of 22(3) \AA, and as the ordering
temperature is approached its propagation vector decreases linearly in the
H-direction and becomes long-range ordered. Upon further populating the
interstitial iron site, the spin-density wave gives way to an incommensurate
helical ordering with propagation vector () at base temperature. For a sample with , we
also find an incommensurate spin-density wave that competes with the
bicollinear commensurate ordering close to the N\'eel point. The shifting of
spectral weight between competing magnetic orderings observed in several
samples is supporting evidence for the phase separation being electronic in
nature, and hence leads to crystallographic phase separation around the
critical interstitial iron concentration of 12%. With results from both powder
and single crystal samples, we construct a magnetic-crystallographic phase
diagram of FeTe for $ 5% < x <17%
Precipitating Ordered Skyrmion Lattices from Helical Spaghetti
Magnetic skyrmions have been the focus of intense research due to their
potential applications in ultra-high density data and logic technologies, as
well as for the unique physics arising from their antisymmetric exchange term
and topological protections. In this work we prepare a chiral jammed state in
chemically disordered (Fe, Co)Si consisting of a combination of
randomly-oriented magnetic helices, labyrinth domains, rotationally disordered
skyrmion lattices and/or isolated skyrmions. Using small angle neutron
scattering, (SANS) we demonstrate a symmetry-breaking magnetic field sequence
which disentangles the jammed state, resulting in an ordered, oriented skyrmion
lattice. The same field sequence was performed on a sample of powdered Cu2OSeO3
and again yields an ordered, oriented skyrmion lattice, despite relatively
non-interacting nature of the grains. Micromagnetic simulations confirm the
promotion of a preferred skyrmion lattice orientation after field treatment,
independent of the initial configuration, suggesting this effect may be
universally applicable. Energetics extracted from the simulations suggest that
approaching a magnetic hard axis causes the moments to diverge away from the
magnetic field, increasing the Dzyaloshinskii-Moriya energy, followed
subsequently by a lattice re-orientation. The ability to facilitate an emergent
ordered magnetic lattice with long-range orientation in a variety of materials
despite overwhelming internal disorder enables the study of skyrmions even in
imperfect powdered or polycrystalline systems and greatly improves the ability
to rapidly screen candidate skyrmion materials
Polarization-analyzed small-angle neutron scattering. II. Mathematical angular analysis
Polarization-analyzed small-angle neutron scattering (SANS) is a powerful tool for the study of magnetic morphology with directional sensitivity. Building upon polarized scattering theory, this article presents simplified procedures for the reduction of longitudinally polarized SANS into terms of the three mutually orthogonal magnetic scattering contributions plus a structural contribution. Special emphasis is given to the treatment of anisotropic systems. The meaning and significance of scattering interferences between nuclear and magnetic scattering and between the scattering from magnetic moments projected onto distinct orthogonal axes are discussed in detail. Concise tables summarize the algorithms derived for the most commonly encountered conditions. These tables are designed to be used as a reference in the challenging task of extracting the full wealth of information available from polarization-analyzed SANS
Particle Moment Canting in CoFe2O4 Nanoparticles
Polarization-analyzed small-angle neutron scattering methods are used to determine the spin morphology in high crystalline anisotropy, 11 nm diameter CoFe2O4 nanoparticle assemblies with randomly oriented easy axes. In moderate to high magnetic fields, the nanoparticles adopt a uniformly canted structure, rather than forming domains, shells, or other arrangements. The observed canting angles agree quantitatively with those predicted from an energy model dominated by Zeeman and anisotropy competition, with implications for the technological use of such nanoparticles
Magnetic Interaction of Multifunctional Core–Shell Nanoparticles for Highly Effective Theranostics
The controlled size and surface treatment of magnetic nanoparticles (NPs) make one-stage combination feasible for enhanced magnetic resonance imaging (MRI) contrast and effective hyperthermia. However, superparamagnetic behavior, essential for avoiding the aggregation of magnetic NPs, substantially limits their performance. Here, a superparamagnetic core–shell structure is developed, which promotes the formation of vortex-like intraparticle magnetization structures in the remanent state, leading to reduced dipolar interactions between two neighboring NPs, while during an MRI scan, the presence of a DC magnetic field induces the formation of NP chains, introducing increased local inhomogeneous dipole fields that enhance relaxivity. The core–shell NPs also reveal an augmented anisotropy, due to exchange coupling to the high anisotropy core, which enhances the specific absorption rate. This in vivo tumor study reveals that the tumor cells can be clearly diagnosed during an MRI scan and the tumor size is substantially reduced through hyperthermia therapy by using the same FePt@iron oxide nanoparticles, realizing the concept of theranostics
Correlated spin canting in ordered core-shell Fe3O4/MnxFe3-XO4 nanoparticle assemblies
Polarization-analyzed small-angle neutron-scattering methods are used to determine the spin arrangements and experimental length scales of magnetic correlations in ordered three-dimensional assemblies of ∼7.4-nm-diam core-shell Fe3O4/MnxFe3−xO4 nanoparticles. In moderate to high magnetic fields, the assemblies display a canted magnetic structure where the canting direction is coherent from nanoparticle to nanoparticle, in contrast to the less extended, more single-particle-like behavior for similar ferrite assemblies. The observed magnetic scattering is modeled by assuming that the interparticle dipolar coupling combined with Zeeman effects in a field leads to nanoparticle domains with preferred net spin alignments relative to packing symmetry axes. Over a range of fields and temperatures, the model qualitatively explains the observed scattering anomalies in terms of clusters that vary in area and thickness, highlighting the complex structures adopted in real, dense nanoparticle systems. The clusters often have a strong two-dimensional magnetic character which is attributed to structural stacking faults and the resulting influence of interparticle dipolar interactions for these magnetically soft nanoparticles
Resolving material-specific structures within Fe₃O₄|γ-Mn₂O₃ core|shell nanoparticles using anomalous small-angle X-ray scattering
Here it is demonstrated that multiple-energy, anomalous small-angle X-ray scattering (ASAXS) provides significant enhancement in sensitivity to internal material boundaries of layered nanoparticles compared with the traditional modeling of a single scattering energy, even for cases in which high scattering contrast naturally exists. Specifically, the material-specific structure of monodispersed Fe₃O₄|γ-Mn₂O₃ core|shell nanoparticles is determined, and the contribution of each component to the total scattering profile is identified with unprecedented clarity. We show that Fe₃O₄|γ-Mn₂O₃ core|shell nanoparticles with a diameter of 8.2 ± 0.2 nm consist of a core with a composition near Fe₃O₄ surrounded by a (Mn(x)Fe(1-x))₃O₄ shell with a graded composition, ranging from x ≈ 0.40 at the inner shell toward x ≈ 0.46 at the surface. Evaluation of the scattering contribution arising from the interference between material-specific layers additionally reveals the presence of Fe₃O₄ cores without a coating shell. Finally, it is found that the material-specific scattering profile shapes and chemical compositions extracted by this method are independent of the original input chemical compositions used in the analysis, revealing multiple-energy ASAXS as a powerful tool for determining internal nanostructured morphology even if the exact composition of the individual layers is not known a priori