Magnetic skyrmions have been the focus of intense research due to their
potential applications in ultra-high density data and logic technologies, as
well as for the unique physics arising from their antisymmetric exchange term
and topological protections. In this work we prepare a chiral jammed state in
chemically disordered (Fe, Co)Si consisting of a combination of
randomly-oriented magnetic helices, labyrinth domains, rotationally disordered
skyrmion lattices and/or isolated skyrmions. Using small angle neutron
scattering, (SANS) we demonstrate a symmetry-breaking magnetic field sequence
which disentangles the jammed state, resulting in an ordered, oriented skyrmion
lattice. The same field sequence was performed on a sample of powdered Cu2OSeO3
and again yields an ordered, oriented skyrmion lattice, despite relatively
non-interacting nature of the grains. Micromagnetic simulations confirm the
promotion of a preferred skyrmion lattice orientation after field treatment,
independent of the initial configuration, suggesting this effect may be
universally applicable. Energetics extracted from the simulations suggest that
approaching a magnetic hard axis causes the moments to diverge away from the
magnetic field, increasing the Dzyaloshinskii-Moriya energy, followed
subsequently by a lattice re-orientation. The ability to facilitate an emergent
ordered magnetic lattice with long-range orientation in a variety of materials
despite overwhelming internal disorder enables the study of skyrmions even in
imperfect powdered or polycrystalline systems and greatly improves the ability
to rapidly screen candidate skyrmion materials