9 research outputs found

    Metallic impurity free carbon nanotube paste electrodes

    No full text
    Electrodes modified with carbon nanomaterials find wide ranging applications in electrochemistry such as in energy generation and storage through to applications in electroanalysis. A substantial limitation is the presence of metallic impurities which vary between batches and can produce erroneous results. Consequently we have explored the electrochemical properties of metallic impurity free carbon nanotube paste electrodes using potassium ferrocyanide and hydrogen peroxide as model compounds. In terms of the latter utilising cyclic voltammetry, a linear range from 0.75 to 3 mM with a limit of detection of 0.19 mM is possible using the electrochemical oxidation of hydrogen peroxide while using the electrochemical reduction of the target analyte, a linear range from 0.5 to 249 mM is possible with a detection limit of 0.43 mM. The ultra-small size of the carbon nanotubes and fabrication methodology result in a tightly bound carbon nanotube electrode surface which does not exhibit thin-layer behaviour resulting in highly reproducible electrodes with the %RSD found to be 5.5%. These analytical ranges, detection limits and reproducibility are technologically useful. The carbon nanotubes utilised are completely free from metallic impurities and do not require lengthy processing to remove impurities and consequently have no variation in the purity of the nanomaterial between batches as is commonly the case for other available carbon nanotube material. The impurity free nature of this nanomaterial allows for highly reproducible and intelligent sensors based on carbon nanotubes to be understood and realised for the first time

    In Situ X-ray Photoelectron Spectroscopic and Electrochemical Studies of the Bromide Anions Dissolved in 1-Ethyl-3-Methyl Imidazolium Tetrafluoroborate

    No full text
    Influence of electrode potential on the electrochemical behavior of a 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4) solution containing 5 wt % 1-ethyl-3-methylimidazolium bromide (EMImBr) has been investigated using electrochemical and synchrotron-initiated high-resolution in situ X-ray photoelectron spectroscopy (XPS) methods. Observation of the Br 3d5/2 in situ XPS signal, collected in a 5 wt % EMImBr solution at an EMImBF4⁻vacuum interface, enabled the detection of the start of the electrooxidation process of the Br− anion to Br3− anion and thereafter to the Br2 at the micro-mesoporous carbon electrode, polarized continuously at the high fixed positive potentials. A new photoelectron peak, corresponding to B⁻O bond formation in the B 1s in situ XPS spectra at E ≤ −1.17 V, parallel to the start of the electroreduction of the residual water at the micro-mesoporous carbon electrode, was observed and is discussed. The electroreduction of the residual water caused a reduction in the absolute value of binding energy vs. potential plot slope twice to ca. dBE dE−1 = −0.5 eV V−1 at E ≤ −1.17 V for C 1s, N 1s, B 1s, F 1s, and Br 3d5/2 photoelectrons

    An introduction to thiol redox proteins in the endoplasmic reticulum and a review of current electrochemical methods of detection of thiols

    No full text
    This aim of this paper is to expound the complexity of thiol redox systems in the endoplasmic reticulum of eukaryotic cells to the electroanalytical community. A summary of the state of the art in electrochemical methods for detection of thiols gives an insight into the challenges that need to be addressed to bridge the disparity between current analytical techniques and applications in a real biological scenario

    Prussian Blue Modified Solid Carbon Nanorod Whisker Paste Composite Electrodes: Evaluation towards the Electroanalytical Sensing of H2O2

    Get PDF
    Metallic impurity free solid carbon nanorod “Whiskers” (SCNR Whiskers), a derivative of carbon nanotubes, are explored in the fabrication of a Prussian Blue composite electrode and critically evaluated towards the mediated electroanalytical sensing of H2O2. The sensitivity and detection limits for H2O2 on the paste electrodes containing 20% (w/w) Prussian Blue, mineral oil, and carbon nanorod whiskers were explored and found to be 120 mA/(M cm2) and 4.1 ΌM, respectively, over the concentration range 0.01 to 0.10 mM. Charge transfer constant for the 20% Prussian Blue containing SCNR Whiskers paste electrode was calculated, for the reduction of Prussian Blue to Prussian White, to reveal a value of 1.8±0.2 1/s (α=0.43, N=3). Surprisingly, our studies indicate that these metallic impurity-free SCNR Whiskers, in this configuration, behave electrochemically similar to that of an electrode constructed from graphite

    The Electrochemical Behaviour of Quaternary Amine-Based Room-Temperature Ionic Liquid N4111(TFSI)

    No full text
    In this study, we used the in situ X-ray photoelectron spectroscopy (XPS), in situ mass spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy methods, for the first time, in a detailed exploration of the electrochemical behaviour of a quaternary amine cation-based room-temperature ionic liquid, butyl-trimethyl-ammonium bis(trifluoromethylsulfonyl)imide (N4111(TFSI)), at the negatively and positively polarised molybdenum carbide-derived micro-mesoporous carbon (mmp-C(Mo2C)) electrodes that can be used as high surface area supporting material for electrocatalysts. The shapes of the C 1s, N 1s, O 1s, F 1s and S 2p XPS spectra were stable for N4111(TFSI) within a very wide potential range. The XPS data indicated the non-specific adsorption character of the cations and anions in the potential range from −2.00 V to 0.00 V. Thus, this region can be used for the detailed analysis of catalytic reaction mechanisms. We observed strong adsorption from 0.00 V to 1.80 V, and at E > 1.80 V, very strong adsorption of the N4111(TFSI) at the mmp-C(Mo2C) took place. At more negative potentials than −2.00 V, the formation of a surface layer containing both N4111+ cations and TFSI− anions was established with the formation of various gaseous compounds. Collected data indicated the electrochemical instability of the N4111+ cation at E < −2.00 V
    corecore