632 research outputs found

    Entanglement purification protocols for all graph states

    Get PDF
    We present multiparty entanglement purification protocols that are capable of purifying arbitrary graph states directly. We develop recurrence and breeding protocols and compare our methods with strategies based on bipartite entanglement purification in static and communication scenarios. We find that direct multiparty purification is of advantage with respect to achievable yields and minimal required fidelity in static scenarios, and with respect to obtainable fidelity in the case of noisy operations in both scenarios.Comment: revtex 10 pages, 6 figure

    Renormalization algorithm with graph enhancement

    Get PDF
    We introduce a class of variational states to describe quantum many-body systems. This class generalizes matrix product states which underly the density-matrix renormalization group approach by combining them with weighted graph states. States within this class may (i) possess arbitrarily long-ranged two-point correlations, (ii) exhibit an arbitrary degree of block entanglement entropy up to a volume law, (iii) may be taken translationally invariant, while at the same time (iv) local properties and two-point correlations can be computed efficiently. This new variational class of states can be thought of as being prepared from matrix product states, followed by commuting unitaries on arbitrary constituents, hence truly generalizing both matrix product and weighted graph states. We use this class of states to formulate a renormalization algorithm with graph enhancement (RAGE) and present numerical examples demonstrating that improvements over density-matrix renormalization group simulations can be achieved in the simulation of ground states and quantum algorithms. Further generalizations, e.g., to higher spatial dimensions, are outlined.Comment: 4 pages, 1 figur

    Quantum communication cost of preparing multipartite entanglement

    Full text link
    We study the preparation and distribution of high-fidelity multi-party entangled states via noisy channels and operations. In the particular case of GHZ and cluster states, we study different strategies using bipartite or multipartite purification protocols. The most efficient strategy depends on the target fidelity one wishes to achieve and on the quality of transmission channel and local operations. We show the existence of a crossing point beyond which the strategy making use of the purification of the state as a whole is more efficient than a strategy in which pairs are purified before they are connected to the final state. We also study the efficiency of intermediate strategies, including sequences of purification and connection. We show that a multipartite strategy is to be used if one wishes to achieve high fidelity, whereas a bipartite strategy gives a better yield for low target fidelity.Comment: 21 pages, 17 figures; accepted for publication in Phys. Rev. A; v2: corrections in figure

    Determination of enantiomeric excess of leucine and valine by X-ray powder diffraction

    Get PDF
    Two amino acids, leucine and valine, were studied by X-ray powder diffraction (XRPD). The linear correlations between intensity of racemate (decrease) or enantiomer (increase) and enantiomeric excesses were observed in each case

    Carotid artery stiffness in metabolic syndrome: Sex differences

    Get PDF
    Introduction: The effect of metabolic syndrome (MS) on carotid stiffness (CS) in the context of gender is under research. Objective: We examined the relationship between the MS and CS in men (M) and women (W) and investigated if the impact of cardiovascular risk factors on CS is modulated by gender. Patients and Methods: The study included 419 subjects (mean age 54.3 years): 215 (51%) with MS (109 W and 106 M) and 204 (49%) without MS (98 W and 106 M). Carotid intima-media thickness (IMT) and CS parameters (beta stiffness index (beta), Peterson’s elastic modulus (Ep), arterial compliance (AC) and one-point pulse wave velocity (PWV-beta)) were measured with the echo-tracking (eT) system. Results: ANCOVA demonstrated that MS was associated with elevated CS indices (p = 0.003 for beta and 0.025 for PWV-beta), although further sex-specific analysis revealed that this relationship was significant only in W (p = 0.021 for beta). Age was associated with CS in both M and W, pulse pressure (PP) and body mass index turned out to be determinants of CS solely in W, while the effect of mean arterial pressure (MAP) and heart rate was more pronounced in M. MANOVA performed in subjects with MS revealed that age and diabetes mellitus type 2 were determinants of CS in both sexes, diastolic blood pressure and MAP – solely in M and systolic blood pressure, PP and waist circumference – solely in W (the relationship between the waist circumference and AC was paradoxical). Conclusion: The relationship between MS and CS is stronger in W than in M. In subjects with MS, various components of arterial pressure exert different sex-specific effects on CS – with the impact of the pulsative component of arterial pressure (PP) observed in W and the impact of the steady component (MAP) observed in M

    Recursive quantum repeater networks

    Full text link
    Internet-scale quantum repeater networks will be heterogeneous in physical technology, repeater functionality, and management. The classical control necessary to use the network will therefore face similar issues as Internet data transmission. Many scalability and management problems that arose during the development of the Internet might have been solved in a more uniform fashion, improving flexibility and reducing redundant engineering effort. Quantum repeater network development is currently at the stage where we risk similar duplication when separate systems are combined. We propose a unifying framework that can be used with all existing repeater designs. We introduce the notion of a Quantum Recursive Network Architecture, developed from the emerging classical concept of 'recursive networks', extending recursive mechanisms from a focus on data forwarding to a more general distributed computing request framework. Recursion abstracts independent transit networks as single relay nodes, unifies software layering, and virtualizes the addresses of resources to improve information hiding and resource management. Our architecture is useful for building arbitrary distributed states, including fundamental distributed states such as Bell pairs and GHZ, W, and cluster states.Comment: 14 page

    Optimal purification of thermal graph states

    Get PDF
    In this paper, a purification protocol is presented and its performance is proven to be optimal when applied to a particular subset of graph states that are subject to local Z-noise. Such mixed states can be produced by bringing a system into thermal equilibrium, when it is described by a Hamiltonian which has a particular graph state as its unique ground state. From this protocol, we derive the exact value of the critical temperature above which purification is impossible, as well as the related optimal purification rates. A possible simulation of graph Hamiltonians is proposed, which requires only bipartite interactions and local magnetic fields, enabling the tuning of the system temperature.Comment: 5 pages, 4 figures v2: published versio
    • …
    corecore