191 research outputs found

    Effect of Target Material Yield Strength on Hypervelocity Perforation and Ballistic Limit

    Get PDF
    Viscoplastic flow theory in hypervelocity projectile perforation analyses of thin plate

    Influence of large deformations and midplane forces on the plastic behavior of impulsively loaded plates

    Get PDF
    Analysis of supported circular plate under impulsive loadin

    Interacting Binaries with Eccentric Orbits. Secular Orbital Evolution Due To Conservative Mass Transfer

    Full text link
    We investigate the secular evolution of the orbital semi-major axis and eccentricity due to mass transfer in eccentric binaries, assuming conservation of total system mass and orbital angular momentum. Assuming a delta function mass transfer rate centered at periastron, we find rates of secular change of the orbital semi-major axis and eccentricity which are linearly proportional to the magnitude of the mass transfer rate at periastron. The rates can be positive as well as negative, so that the semi-major axis and eccentricity can increase as well as decrease in time. Adopting a delta-function mass-transfer rate of 10^{-9} M_\sun {\rm yr}^{-1} at periastron yields orbital evolution timescales ranging from a few Myr to a Hubble time or more, depending on the binary mass ratio and orbital eccentricity. Comparison with orbital evolution timescales due to dissipative tides furthermore shows that tides cannot, in all cases, circularize the orbit rapidly enough to justify the often adopted assumption of instantaneous circularization at the onset of mass transfer. The formalism presented can be incorporated in binary evolution and population synthesis codes to create a self-consistent treatment of mass transfer in eccentric binaries.Comment: 16 pages, 8 figures, Accepted by The Astrophysical Journa

    Photometric Solutions for Detached Eclipsing Binaries: selection of ideal distance indicators in the SMC

    Full text link
    Detached eclipsing binary stars provide a robust one-step distance determination to nearby galaxies. As a by-product of Galactic microlensing searches, catalogs of thousands of variable stars including eclipsing binaries have been produced by the OGLE, MACHO and EROS collaborations. We present photometric solutions for detached eclipsing binaries in the Small Magellanic Cloud (SMC) discovered by the OGLE collaboration. The solutions were obtained with an automated version of the Wilson-Devinney program. By fitting mock catalogs of eclipsing binaries we find that the normalized stellar radii (particularly their sum) and the surface brightness ratio are accurately described by the fitted parameters and estimated standard errors, despite various systematic uncertainties. In many cases these parameters are well constrained. In addition we find that systems exhibiting complete eclipses can be reliably identified where the fractional standard errors in the radii are small. We present two quantitatively selected sub-samples of eclipsing binaries that will be excellent distance indicators. These can be used both for computation of the distance to the SMC and to probe its structure. One particularly interesting binary has a very well determined solution, exhibits complete eclipses, and is comprised of well detached G-type, class IIII giants.Comment: 29 pages, 12 figures. To be published in Ap

    Binary Quasars in the Sloan Digital Sky Survey: Evidence for Excess Clustering on Small Scales

    Full text link
    We present a sample of 218 new quasar pairs with proper transverse separations R_prop < 1 Mpc/h over the redshift range 0.5 < z < 3.0, discovered from an extensive follow up campaign to find companions around the Sloan Digital Sky Survey and 2dF Quasar Redshift Survey quasars. This sample includes 26 new binary quasars with separations R_prop < 50 kpc/h (theta < 10 arcseconds), more than doubling the number of such systems known. We define a statistical sample of binaries selected with homogeneous criteria and compute its selection function, taking into account sources of incompleteness. The first measurement of the quasar correlation function on scales 10 kpc/h < R_prop < 400 kpc/h is presented. For R_prop < 40 kpc/h, we detect an order of magnitude excess clustering over the expectation from the large scale R_prop > 3 Mpc/h quasar correlation function, extrapolated down as a power law to the separations probed by our binaries. The excess grows to ~ 30 at R_prop ~ 10 kpc/h, and provides compelling evidence that the quasar autocorrelation function gets progressively steeper on sub-Mpc scales. This small scale excess can likely be attributed to dissipative interaction events which trigger quasar activity in rich environments. Recent small scale measurements of galaxy clustering and quasar-galaxy clustering are reviewed and discussed in relation to our measurement of small scale quasar clustering.Comment: 25 pages, 12 figures, 9 tables. Submitted to the Astronomical Journa
    • ā€¦
    corecore