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TECHNICAL NOTE 3206

TORSIONAL VIBRATIONS OF HOLLOW THIN-WALLED
CYLINDRICAL BEAMS

By Edwin T. Kruszewski and Eldon E. Kordes
SUMMARY

The differentiasl equations and boundary conditions appropriate to
the analysis of torsional vibrations of hollow thin-walled cylindrical
beams are presented. General solutlons for the modes and frequencies of
cantilever and free-free cylindrical beams of arbitrary doubly symmetrical
cross sectlon with uniform wall thickness sre derived. Numerical calcu-
lations for beams of rectangular cross section are used to determine the
influence on torsional vibrations of bending stresses due to torsion and
of longlitudinal inertia. The inclusion of longitudinal inertia exposes
a strong coupling of the torsionsl vibration with longitudinal vibrations
at low plan~-form aspect ratios, and some of the frequencies obtained are
seen to be actually assoclated with modes of primsrily longitudinal vibra-
tion. The solution for cylinders of rectangular cross section is also
used to investigate the accuracy of & solution obtained from an analysis
of an equlvalent four-flange box beam.

INTRODUCTION

Investigations of the transverse vibration of hollow thin-walled
cylindrical beams (see, for exsmple, refs. 1 and 2) show that secondary
effects such as transverse shear, shear lag, and longitudinal inertia
can have sppreclaeble influence on the transverse modes and freguencies
of structures. Torsional oscillations are influenced by similar secondary
effects, namely, longitudinal stresses which resist the tendency of the
cross sections to warp out of theilr initial planes and the longitudinal
inertia which 1s developed by the warping motion. (The former effect is
commonly referred to as "bending stresses due to torsion" and will be so
designated throughout this report.)

In order to assess the lmportance of these secondary effects, a pro-
cedure similar to that used in reference 1 has been used in the present
paper to analyze the torsional vibrations of thin-walled cylindrical
beams. The governing variational principle, differential equations, and
boundary conditions are discussed, and general solutions for cantilever
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and free-free cylinders of arbitrary doubly symmetrical cross section
wilth uniform wall thickness are presented. - Results of numerical calcu-
lations based on the solution for the symmetricelly vibrating free-free
cylinder of rectangular cross section are used to illustrate the influ-
ence of bending stresses due to torsion and longltudinal inertis on
torsional oscillations. Finally, the results obtained from the calcu-
lations for cylinders of rectangular cross section are compared with
those obtalned from an analysis of an equivalent four-flange box beam.

Q =H O

o |

SYMBOLS

cross-sectlonal area of flange

cross-sectional area enclosed by median line of wall thickness
parameter defined by equation (29)

constant

Young's modulus of elasticity

shear modulus of elasticity

mass polar moment of inertle per unit length

ua 2

torsional stiffness constant, —=
: PJE
parsmeter, AR

Fourler coefficient

length of cantilever beam; half-length of free-free beam

parameter defined by equation (36)

maxlimum kinetic energy
maximum strein energy
half-depth of rectangular beam

helf-width of rectangular beam
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8yn s O Fourier series coefficients

i,j,myn 1Iintegers

Kyt coefflclent of longitudinal inertia, % %g

kp frequency coefficient, m\’E§§E

D perimeter of cross section

s distance along perimeter of cross section (see fig. 1)
t thickness of effective shear-carrylng area

t! thickness of effective normsl-stress-carryling area

tg actual wall thickness

u(x,s) displacement in x-direction

qF(x) displacement of flange in x-direction

X longitudinal coordinsate

7xs shear strain

€y longitudinal strain

o(x) rotation of cross section

A Iagranglian multiplier

B mass density of beam

£ nondimensional longltudinal cocordinate, %

p distance from centroid of cross section to tangent to the

median line of wall thickness (see fig. 1)
g longitudinal direct stress
T shear stress

W natural circular frequency of beam
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BASIC EQUATIONS

Assumptions

The prcblem considered herein is that of the natural torsional
vibration of a thin-walled hollow cylindrical beam. The cross section
of the beam is assumed to be doubly symmetrical so that no transverse
vibrations are introduced. The wall thickness of the cylindrical beam
is assumed to be made up of an effective normal-stress-carrylng thick-
ness t', an effective shear-carrying thickness +, and a thickness tg
assoclated with the mass properties of the beam. (These three distinct
thicknesses are introduced for generality; they allow, for example, the
inclusion of stringers which carry only normal stress and not shear.)

For the present analysis, the following simplifying assumptions
(also used in ref. 1) are made:

(a) Changes 1n the size and shape of the cross section are
negligible.

(b) Stress and strain are assumed to be uniform across the wall
thickness.

(¢) The effect of circumferential stress upon longitudinal strain
is negligible. :

Because cross sections of hollow thin-walled cylinders are more
easily sheared out of shape under torsional loads than under bending
loads, assumption (a) has more significance in the present torsion prob-
lem than it did in the bending problem in reference 1. For torsional
vibrations, this assumption restricts the applicability of the analysis
to structures thatcontain closely spaced bulkheads which are rigid in
their own planes but offer negligible resistance to warping out of their
planes.

In agreement with the assumptions, the distortlons of the vibrating
beam will be defined by a rotation 6(x) of the cross section and a
longitudinal displacement u(x,s) of each point of the median line of
the beam well. In agreement with the assumption of double symmetry of
the cross section, the displacement u must be antiperiodic in the
coordinate s wilth a period equal to one-quarter the perimeter p.

Stregs-Straln Relations

The longitudinal and shear stralns in terms of the displace-~
ments 6(x) and u(x,s) are
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du

== 1

x = %, (1)

and

Tes =+ 0 2 (2)

where p 1s the distance from the centroid of the cross sectlion to the
tangent to the median line (see fig. 1). The corresponding components
of stress are

= @
r (3)
and
e = 68+ 0 &) ()

In elementary torsion theory, the cross sectlion of the beam is con~
sidered to be unrestrained against warping (that is, E = 0) with the
result that the longitudlnal stress oy 1s zero.

Variational Principle and Energy Relastions

In order to use the variastilonal eguation

8(U - T) =0 (5)

in the present analysis, the maximum strain energy U and the maximum
kinetic energy T are expressed in terms of the displacements 6(x)
and u(x,s) The variastion is taken independently with respect to e(x)
and u(x, with the provision that these displacements satisfy the
appropriate geometrical boundary conditions and that u(x,s) be anti-
periodic in s with a period p/k%.

For a beam vibrating in a natural torsion mode, the maximum strain
energy is

f ﬁ%(- + 0. )2 ds dx + %LLﬁEt'(%&f ds dx (6)

The first term in equation (6) represents the strain energy usually con-
sidered in elementary theory and the second term represents the strain
energy contributed by the restralint of warping.
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The maximum kinetic energy is

L L
_1 o 25 . L 24 .2
T—2/; wlpedx+2\/(;9§mptaudsdx (N

where o 1s the natural circular frequency of the particular mode,

1s the mass polar moment of inertia per unit length of the cross section,
and p 1is the mass density of the beam. The first term in equation (7)
represents the kinetic energy usually considered in elementary theory;
the second term represents the kinetic energy of warping or longitudinal
motion.

Differentlial Equations and Boundary Condltions

The substitution of equations (6) and (7) into equation (5) and the
application of the calculus of variations results in the simultaneous
integrodifferential equations for the displacements u(x,s) and B(x),

2
Et'——au+G3—t-a—u-+Gt52‘1+c—a(pt)ie-+um2tau=o (8)
d9x2 ds 08 352 ds dx
2
§G‘tp it +pdeds+lpw26=0 (9)
ox Js ax2
together with the boundary conditions at each end of the beam,
fEt' U gy ds = 0 (10)
ox
and
de
Gt—u+p-—)pdsae=o (11)
Sg (86 ax,

At a fixed end, both boundary equations (10) and (11) are satisfied
since the geometricel boundary condltions require that both du and 56
be zero. At a free end, since both Bdu and 88 are arbitrary, equa-"
tions (10) and (11} yield the natural boundary conditions

E' OU o _ (12)
ox
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and

ou de)
Gt{s=— + p =2}p ds = O 1
55(83 P )P (13)
Equation (12) expresses the condition of zero longitudinal direct stress
and equation (13) expresses the condition of zero net torque on the free
end.

Although the integrodifferential equations (8) and (9) were obtained
by use of the variational principle, these equations can, of course, be
obtained directly from consideration of equlilibrium conditions.

GENERAL SOLUTIONS FOR CYLINDERS OF UNIFORM WALL THICKNESS

In this section, the exact solutions are presented for cylinders of
uniform wall thickness; that is, t', t, and t, &are each uniform around
the cross section. These solutions are obtained by means of Fourler
series and the variational principle (eq. (5)) - a more expedient approach
then a direct attack on the integrodifferential equations (8) and (9) and
their associated boundary conditions.

Cantllever Bean

For a cantilever beam (fig. 1(c)), the geometrical conditions are
u(0,s) = 6(0) = 0. The natural boundary conditions, equations (12)
and (13), are satisfied as a result of the variational process. The
displacements 8(x) and u(x,s) are assumed to be given by the
expressions

=}

8(x) =C+ > by cos X (14)
m=1,3,5 2L
and
u(x,s) = 6  sin TX gin 258 (15)
’ m=1,3,5 n=2,%,6 2L P

The cholce of the particular trigonometric functions used in the expres-
sions for u and 6 was gulded by consideration of the orthogonality
required for the simplification of the strain-energy expressions. The
condition u(0,s) = O 1is satisfied by each term of equation (15). The



8 NACA TN 3206

constant C in the expression for 6(x) 1is required to sllow 6(L) to
be unrestricted. The condition ) “

[+2]

8(0) =C+ >  by=0 (16)
m=1,3,5 .

1s introduced into the variational procedure by means of the Lagrangian
multiplier method.

Substitution of equetions (14) and (15) into equations (6) and (7)
yields

L ® o 2
U-‘I‘=E§-l- z E m—Iia.m_ncosm:'txsinamm5 ds dx -+
2 _ c o 6 2L 2L P
0 =1,3,5 n—2,l+,

L 00 00
Gt ant - mmx 2nrs
S L 5&(}115_—_ Z _P a‘m,n sin 5T, cos 5

=1,3,5 n=2,%,6 - : .

[23]

P %bm sin”gfl’f) ds dx -

m=1,5,5
. 2fL o 2
—— o E bm cos — + C dx -

m=1,3,5

wtgo® T = = 2nm °

= f 5§ z 8y 5in DX sin 5] as ax (17)

2 0 m=1,3,5 n=2,k4,6 2L P

In order to make equation (17) stationary and at the same time
satisfy the constraining relationship . -
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2 v =C + Z by =0 (18)

it is sufficient to set

8(U-T +Ap) =0 (19)

where the variation is with respect to the a's, b's, and C considered
as independent varisbles and where A 1s a ILagranglan multiplier. The
variational process yields the following equations:

U - 1) _ <3£)2 Ip Ejﬂ) Ip | _ g idn2
e " () Ray, + Gt( =) B ot 15 Kby
. 1=1,3,5, ...
. 2. Io_  _
w lJ-ta Taij = O j = 2’ )+, 6, . . . (20)

- @ 2 2
0D e S wieaEf R S kR

by oy " " 2,56
. 1-1
in\~ L 2
Gt(2’£> PKoab -wlp_bi-(l) ﬂw%0+7\
= Q0 (i = l, 3) 5, LI ') (21)

g:;
(U - T _ 2L 2 _
Tli_x?g__we%m___;,sm(—l) bm-mIPLC+7\—O (22)

where
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K = gLﬁgp cos 22?5 ds (23)
and

%:%%pds:ﬂ (2k)

in which A, 1s the area enclosed by the medlan line of the wall thick-
ness. In obtaining equation (21) the relation

ijﬁpeds - Ko® + 5 > k2 (25)

b n=2; ,6

was utilized. This results from an epplication of Parseval's theorem,
Ko and K, belng coefficients of a Fourler series expansion of p.

With the use of the nondimensional parameters

2
o (=6)
K 2 - Ipon (27)

L

K2 = E; (28)

GL

and
2 ' 2

B =KL P Plal) i (29)

equations (20), (21), and (22) may be reduced to
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2 - 1i=1,35 ...

oo 2
It o S (iﬁ)( pt i 2) 1,2
- inK &,  + 1+ = - = kplp, -
LT n=2,5.6 nKn8in 8 6Kn 2 i
i-1 .
EL (-l)—g—.krec + %} =0 (i =1, 3, 5, . . ') (51)

ix

m-1
kp m=§5 = (1) % wmpeige-2ao (32)

where J 1is the elementary torsional stiffness constant defined as

S 1A Pt

> (33)

From equation (30),

P, .

b= Kiig i=1,3 5, ... |

aiJ.:—-—z 2bi (3’4‘)
By< + 16J J=2, 4,6, ...

Substituting this expression for a3 into equation (31) and solving
for by yilelds

i-1

E (1) 2 -1
b =iﬁ kT GJ (i-"-'l, 3; 5:"') (55)
i Ny

where
2 2 2

(ix) ( ptBy Ky ) 1,2
N: = 1 —_— = 36
S S~ n=§5 BiZ + 1602/ 2 T (36)
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The substitution of equation (35) into equation (32) and into the
constraining relationship (18) yields the following two homogeneous
equations in C and A:

m~-1

=] 2 00 '—2—‘
2 2 Z 2 1 2 Z o (-1) AL
1 + = = iC - |1 4 ————"—=0(57)
‘T |: “ n=1,3,5 <m") Ny “r n=1,3,5 ™ Np |G
m-1
© 2 (-
2 2 (-1) S- 2\ .o
1+ Z — C - = (38)
T weiy3,5 ™ o n=1,5,5 Y/

The condition for a nomtrivial solution for € and A gives the
frequency equation

m-1
© 2
2 2 2\° 1 1 2 2 (1)
1 =) = +
KII * kT m=l,5;5 (m) Nm kT m= 5215 ot Nm
=0 (59)
n-1
2 2]
2 2 (-1) = > =
1+ Ky m=§’5 mt N m=1,%,5 Mm

which the frequency parameter kp must satisfy. Each term of each of

the. infinite series 1n.the frequency equation contains kp; therefore,
the roots of equation (39) are most readily obtalned by trial.

Once kyp has been determined, a particular mode shape can be found

by letting C = 1 and solving either equation (37) or (38) for A, and
then finally evaluating b, and ay p successively from equations (35)

and (34).

Free-~Free Beams

Symmetrical modes.- For a free-free beam of length 2L with the
origin at the midspan (see fig. 1), the form of the Fourier series
assumed for 6(x) and u(x,s) when the beam is undergoing a symmetrical
mode of torsional vibration may be the same as that assumed for the
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cantilever beam of length L. (See egs. (14) and (15).) However, if
consideration is gilven to the right half of the beam, the only geometri-
cal boundary condition enforced is wu(0,s) = O; therefore, the con-
straining condition (18) does not apply and the appropriate frequency
equation is obtained from equation (37) by letting A = 0. The frequency
equetion is

o) 2 '
R (&)ﬁ:o (%0)

m=1,3,5

After a particulsr root kp has been found from equation (hO), the

%orresponding mode shape may be obtained from equations (35) and (3k4)
with A = 0). )

Antisymmetrical modes.-~ For a free-free beam of length 2L vibrating
in an entisymmetrical torsional mode, specific consideration need again
be given only to the right hslf of the beam (see fig. 1). With the ori-
gin taken at the beam midspan, the only geometrical boundary condition
imposed on the right half-besm is that 6(0) = O. The longitudinal dis-
placement u(x,s) is unrestricted over the length of the beam.

The displacements 6{x) and u(x,s) for the antisymmetrical modes
are assumed to be given by the expressions

o(x) =Cx + > sin WX (41)
m=2,4,6 " 2L
and
u(x,s) = i i cos DX gy 20IS (k2)
m=0,2,4 n=2,k,6 o ek P

As before, the choice of the particular trigonometric series in
equations (41) and (42) was guided by considerations of orthogonality.
The linear term Cx appearing in equation (kl) is necessary to allow
sufficient freedom for the beam to twist.

Using equations (41) and (42) in equations (6) and (7) gives
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2

L 00
R mit mex 2nrns
U-T.=—f5§ -—a.m_nsin sin ds dx +
2 Jo <m=2,;,6 n=2,;k,6 2L . 2L P

Gt L # 0
hukdl Z 2nr mix 2nns
EL (m Z - 8nn CO8 =v— c0s =—— +

0;3,4 n=2,%,6 2L P

- 2

% ot mrx
o] — by cos — + pC ds dx -
m___a, ’6 2L 2L )

2 L o0 2
Iyw
®_ Cx + by sin ZX) ax -
2 0 m=2,4,6 2L

2
e

W fLﬂS' i cos WX gin 2B} a5 gy (4
3)
2 Jo J\mb B4 nbE,s 22 L P

The variation of equation (43) with respect to the a's, b's,
and C glves, after simplification,

i=2, 4,6, ...
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From equation (M),

i3 312 + 163°

L -4 B K413 by (

J

i

2, bk, 6, . .
2, &, 6, ..

.)

15

(46)

(7)

) (48)

which, except for sign, is the same expression as that obtained for the

cantilever and symmetrically vibrating free-free beams (eq. (34)).

equation (h6),

)

From

(49)

Substituting equation (48) into equation (45) and solving for by

glves

2 12 ,
Al

b
i iN

i

where N; is given by equation (36).

(50)
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Substitution of equations (49) and (50) into equation (47) and
simplification gives the following frequency equation for the antilisym- .
metrical vibrating free-free beam:

—_ 2 —_— = z +=|=1 1
kr 2IP L n=2,)-{~,6 B02 + l6n2 <ﬂ) KI n=2, J6 naNn 5 (5 )

After a particular value of kp is obtained from equation (51), the

corresponding mode shape may be computed by letting C = 1 and calcu-
lating the b's and a's successively from equations (50), (49),
and (48).

Discussion of Parameters

In the frequency egquetion, the unknown natural frequency sppears
only in the frequency coefficlent kyp which is defined by the commonly

used relationship o = kp —ggéu The parameter K 1s associated with -
L .

the effect of bending stresses due to torsion, and, if this effect is to -
be neglected, it is sufficient to set K equal to zero in the final ~
frequency equation. The parameter Kkjy is associsted with the effects

of longitudinel inertia and appears only in the expression for Bj.

(See eq. (29).) If the effects of longitudinal inertia are to be neg-
lected, kip may be set equal to zero. With kLI = 0, Bi is independ-

ent of kp and simplification of the trial-and-error solution for the
natural frequencies results, since the infinite summation contained in
N; (eq. (36)) need be calculated only once for a particular beam. In

the following section, it is shown that the influence of longitudinal
inertia is often negligible.

The Kﬁ's are the Fourler coefficlents of the function p(s), which
depends only on the contour of the cross section of the beam. Tt is
interesting to note that, for a cylinder whose cross sectlon is either
circular or & regular polygon, the K,'s become zero and the frequency
equations (39), (40), and (51) can be written in a closed form identical
with the frequency equations obtained from elementary theory. This is
consistent with the generally known fact that beams of such cross section
have no tendency to warp; hence there cen be no longitudinal inertia or
bending stresses due to torsion. -
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RESULTS FOR CYLINDRICAL BEAMS OF RECTANGULAR CROSS SECTION

In order to 1llustrate the effects of bending stresses due to
torsion and longitudinal inertia on the nstural torsiocnasl frequencies,
the present analysis has been applied to hollow thin-walled cylindrical
beams of rectangular cross section. The beams considered are assumed
to have walls of constant thickness, with +t' =% = ty, and a cross-
sectional aspect ratio of 3.6. The numerical calculations have been
limited to the free-free symmetricel modes of vibration. A value of
E/G of 2.65 (appropriate for alumimm alloys) wes used. Results in the
form of the variation of the frequency coefficilent kp with plan-form

aspect retio L/b are shown in figure 2 for the first four modes of
vibration.

The short-dashed curves in figure 2 show results obtained from
calculstions based on elementary torsion theory where the restraint due
to warping of the cross section is neglected. These curves serve as a
basis for resolving the effects of bending stresses due to torsion. The
long-dashed curves are calculated from equation (40) with k;r = O and,

consequently, represent the natural torsional frequencies when only the
effects of bending stresses due to torsion are included. (For the rec-
tangular tube the quantity N; +that appears in equation (40) can be put
in the closed form presented in appendix A; this closed form was used in
this calculation as well as in the calculation of the exact frequencies
mentioned in the next paragreph.) Comparison of these two sets of curves
shows that, as might be expected, the effect of including bending
stresses due to torsion is to increase the calculated natural fregquency
of the beam. For the higher plan-form aspect ratios, the contribution
of bending stresses due to torsion is small. However, this contribution
does become appreciable st the lower values of L/b for the higher modes
of vibration.

The solid curves show the calculated results for the first four
modes, when the combined influence:of longitudinal inertia and bending

stresses due to torsion is taken into account. The values of kE shown

by these curves, which are referred to as "exact," are the lowest four

roots of equation (40).

Comparison of these curves with the long-dashed curves shows that,
as should be expected, the effect of including longitudinal inertia is
to decrease the calculated torsional frequencies. For plan-form aspect
ratios L/b above 4, this effect is practically negligible. For the
lower plan-form aspect ratios, however, the effect becomes appreciable;
the exact curves no longer follow the corresponding long-dashed curves,
but drop off in a seemingly disorderly manner.
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The explanstion for the apparently erratic behavior of the exact
curves may be obtained by considering the kinetic enérgies included in
the derivation of the exact frequency equation (eg. (40)). As was pre-
viously mentioned, the kinetic energy (eq. (7)) consists of two parts:
one which represents the contribution of the rotational inertia and
ancther vhich represents the contributlion of the longitudinal inertia.
If only the inertia of rotation is considered, the resulting frequency
equation represents a primerlily torsional vibretion in which only the
effects of bending stresses due to torsion are included. (The results
of such & solutlon have already been shown by the long-dashed curves 1in
fig. 2.) If, however, only the longitudinal inertia is considered, the
frequency equation obtained represents a particular type of primarily
longitudinal vibration which is hereinafter referred to as "warping"
vibration. (It should be noted that this vibration is not entirely
longitudinal; some twist is present, Just as longitudinal motion 1s
present in the torsional vibration.s The exact frequency equaetion,
which includes the effects of both the rotational and the longitudinal
inertia, can be looked upon as representing the coupling of the two
"uncoupled” vibrations (torsional and warping).

In order to illustrate this coupling, the frequencies of the warping
vibration have been obtalned in appendix B and are inecluded in figure 2
as the dot-dash lines. Consider now, for example, the fourth exact fre-
guency. As the plan-form aspect ratio is_decreased, the exact frequency
follows the fourth uncoupled torsional frequency until an L/b value of
about 3.5 1s reached. At this point, the effect of the warping vibra-
tions becomes predominant and the curve falls off rapidly until the third
uncoupled torsional frequency 1s reached. (Presumably, the mode shape of
the vibration during this transit between the uncoupled torsional fre- -
quencles is roughly the same as the first warping mode.) As L/b is
decreased further, the curve continues to cascade in a simllar manner.

Thus the behavior of the exact frequency curves 1s seen to be guite
rational. At a glven value of L/b, the exact frequency coefficlents
and thelr assoclated modes can be interpreted by considering the fre-
quency coefficients of both uncoupled torslonal and warping vibrations.
At L/b = 2, for example, the first, second, and fourth exact frequencies
are comparable, respectively, to the first, second, and third uncoupled
torsional frequencies. The third exact frequency, which appears to be
an extra torsional frequency, is associated with the first warping mode
of vibratlon. This same phenomenon of seemingly extra frequencies due
to inclusion of longitudinal Inertis was noted for bending vibrations by
Traill-Nash and Collar in reference 2.

The disposition of the exact curves in figure 2 with respect to the
approximate curves suggests that it may not be necessary to consider the
problem of coupled torsion and warping in order to obtain natural fre-
quencies of reasonable accuracy. Certainly, for the higher values of
L/b, the frequency coefflcients obtalned by neglecting longitudinal
inertie are sufficilently accurate. For the lower values of L/b, the
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transitions of the exasct frequencies can be characterized by considering,
in addition, the frequencies of uncoupled warplng vibration.

Besides showlng the quantitative influence of the secondary effects,
the present analysis can be put to another practical use: to assess the
accuracy of simplified torsional-vibration theories. One such theory is
presented in appendix C and is based on an analysis of a four-flange box
such as is shown in figure 3. In such & box beam, the flanges are
assumed to carry only normal stresses while the sheets carry only shear.
In order to represent the rectangular cylinder as a four-flange beam,
the cross-sectional area of each flange is taken to be equal to 1/6 the
section area of the walls adjacent to each corner of the box. In the
analysis, the effects of longitudinal inertia are neglected.

The results of calculations for the natursl torsional frequencles
of rectangular tubes based on the four-flenge solution are shown in
table 1. For comparison, the frequency coefficients calculated from
the elementary solution and from the exact solution without longitudinal
inertia are included. Examination of the results shows that the four-
flenge solution gives frequencles that are in good agreement with those
of the exset solution, even for the low-aspect-ratio box beam where the
influence of bending stresses due to torsion is important.

CONCLUDING REMARKS

The results of numerical calculations show that elementary theory is
adequate for the analysis of torsionel vibrations of box beems with high
or medium plan-form aspect ratios. For box beams with low plan-form aspect
ratlos, the influence of bending stresses due to torsion becomes important.
The influence of longitudinal inertis, however, does not become important
until extremely low %and probably impractical) plan-form aspect ratios are
reached. A simplified procedure for obtaining torsional frequencies, based
on an analysis of an eguivalent four~flange box besm, was found to give
adequate predictions of the effects of bending stresses due to torsion.

The general analyses presented, as well as the numerical results for the
rectangular box beams, should be useful in the assessment of the accuracy
of other simplified procedures that may be developed.

Langley Aeronsutical Laboratory,
National Advisory Committee for Aerocnautics,
Langley Field, Va., May 12, 1954.
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APPENDIX A

CLOSED FORM OF N; FOR CYLINDRICAL BEAMS

OF RECTANGULAR CROSS SECTION

The expression for N; can be written in closed form for a cylin-

drical beam of rectangular cross section and constant thickness. For
such a beam with the dimensions shown in figure 2, the parasmeters become

ﬁ

P = 4(a + b)

_ 16a°b2t

a+b
4 (A1)

4a-b 2rath -
Kp=3 - sin > (n even)

=0 (n 0dd)
I&l J

With equation (Al), equation (36) can be written as

2 > .2\ sin® _a_m_
_ (ix) a2 -12) _, =2 2F+1) | 1 2
Ny = 14 DBy -2k (a2)
8 NN n=2,4,6 ;12(312 + l6n2) 2
or
2 2 o\2 - sin® Tmt_—
2l=+ 1
N; = (1) 1+ 2(.9‘__"21_) S (b ) _
8 nab =2,k ,6 n®
2 nr
sin” ————
S G | k2 (a3)
n=2,4,6 ELE 2 2
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The infinite summstions in equation (A3) can be written in closed
form and the resulting closed expression for Nji is

- _% lﬁ]-_.z (Ak)
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APPENDIX B
SOILUTION FOR THE WARPING VIBRATION OF CYLINDRICAL BEAMS

The solution for the warping vibration of thin-walled cylindrical
beams can be obtalned from the variational equation, as was mentioned
previously, by setting the first term in the expression for kinetie
energy (see eq. (T)) equel to zero.

In order to obtailn the antisymmetrical warping modes that couple
with the free-free symmetrical torsional modes of cylinders with uniform
wall thickness, it 1s sufficient to set Ip "equal to O in equation (17);
then

Bt U - i mt onns ©
U-T-= —-2-—\/h jg E — &p;, COS mix sin-————) ds dx +
0 m=1,3,5 n=2,4,6 2L 2L . P

2 2
+ L
aoad f 99 S o _ sin =X gin 28 Y gg dx (B1)
e 0 m=1,2,5 n=2,4,6 2L P

The substitution of equation (B1) into equation (5) yields the following
equations:

dUu -1T) _ (2 z) D _ 1
__5523__ = (Bi + 163 8y - L T Ksijby = 0 (J

nmou
[
M
N
.
i
-

2, &, 6, . . .) (82)
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2
éﬁg_b-_T_)=_ 2_ -IﬁﬁaiﬂKnam'*(i;) (l+g i Kna)b1=°

(i =1, 3,5, « . -) (35)

If equation (B2) is solved for a;y eand the resulting expression is
substituted into equation (B3), the following equation is obtained:

2
2 ) §EE_ o0 nth

2 -3

-
Gm)= [, o2

b
8 2J n=2,4.,6

—_——}b, =0 (B4)
n=2, :6 312 + l6n2 1

In order that nonzero values of b; may exist, the frequency
equation

% K °
n=2, ,6 Bi + 16n

must be satisfied. The frequency coefficient kp 1is contained in the
parameter Bj. Once a particular root kp has been found from egua-

tion (B5), the corresponding mode shape can be obtained from equation (B2)
by setting b3 equal to the arbitrary value of 1.
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APPENDIX C
SOLUTION FOR A FOUR-FIANGE BOX BEAM

A simplified torslon theory, used to obtain the torsional modes
and frequencies of-structures where the influence of bending stresses
due to torsion 1ls to be included, can be based on an analysis of a four-
flange box beam suéh a8 that shown in figure 3. (The torsional vibra-
tions of such a structure were considered in 1951 by E. H. Mansfield of
the Royal Aircraft Establishment, who obtained results for a cantilever
beam and aslso for an antisymmetrically vibrating free-free beam; in this
appendix results will be shown for the free-free symmetrical modes.) In
an analysis of such a structure the following assumptlons are made:

(a) The flanges are assumed to cerry only normal stresses.

(b) The sheets connecting the flanges sre assumed to carry only
shear.

(c) The cross sections remsin undistorted.
(d) Longitudinal inertis is assumed to be negligible.

The actual flange of the box beam should be replaced by an effective
flange which incorporates all of the normal-stress carrying capacity of
the beam.

In agreement with these assumptions, the distortion of the vibrating
beam is defined by a rotation 6(x) of the cross section and a longi-
tudinel displacement ugp(x) of each flange.

The longitudinal and shear strains are given by equations (1) and (2)
with

u_F (c1)
s b
and
P =aa (02)
for the cover sheets and
up
w_JE (c3)
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and

p=0b (ck)

- for the webs.

The solution for the four-flenge box beam could be obtained by
means of the variational principle; however, the direct use of the
integrodifferential equations is more expedient.

Substituting equations (Cl) to (Chk) into equation (9) yields

4Gt (b - a)up' + 4Gtab(a + b)O" + aﬁlpe =0 (G5)

where primes denote differentiation with respect to x. Equetion (05)
cen be recognized as the equilibrium equation for a cross-sectional
element of the beam.

Because of the assumption that the sheet in a four-flange box
carries only shear, equstion (8) has meaning only at the flanges of the
box. Since the flanges are assumed to be concentrated at a point, the
thickness t' in equation (8) must be defined as

t! = 5(s - b) ' (c6)

where 8 1is the Dirac delta function defined by

8(s - b) =0 (s # 1)
' (cT1)
8(s - b) = (8 = 1)
in such a way that
b+A
f 8(s - b)ds = Ap (c8)
b-A

Therefore, 1f equation (8) is integrated over the corners, that is, from
8 =b-A to B8 =Db+ A, where the infinitesimal quantity A sapproaches
zero, the following differemtial equation 1s obtained:

EApup” - Gt(% + %‘)uF +Gt(b - a)e' =0 (c9)
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Equation (C9) is the equilibrium equation for an element of e flange.

In order to obtain the equilibrium equations (C5) and (C9), use was
made of the previously derived integrodifferential equations (8) and (9)
to show the applicability of these general equastions to a particular
problem. However, equations (C5) and (C9) could have been written
directly from consideration of the equilibrium of the various elements.

Either 6 or wu, may be eliminated from equations (c5) and (C9)
to glve the following equation in 8 or ug alone:

a*e | i heb  uot1? [ a2 k2 bat12 (c10)
deh (a + b)2 EAp(a + D) dgg EAp(a + b) _

or

atug o |2 lep et R LS U 8 12 _6 (o)
agh (2 + b)2 EAp(a + b) | 42 EAp(a + b)
where

£ =

B

Solutions of equations (C10) and (Cll) are of the form e®€  vhere
o 1is a root of the equation

4 2 hap 4Gt 12 2 2 hotr®
) [’“’-‘ P w9

The general solutions for & and up are given by
© = Cy sinh oyt + Cp cosh ok + Cx sin ayt + C) cos ant (c13)
and

up = Dy sinh ;& + Dy cosh a3 + Dz &in agk + Dy cos apt (c1y)
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where and ao are the real and imaginsry roots, respectively, of
equation (Cl2). The constants D; to Dy are related to the con-

stants C; to Cl through equation (C5) or (C9) as follows:

’\

122 - &2 Dl_( 2) _

P 1T\ T )Rt
12 b2 - a2  Dp ( 2 .. za) _

o amz 1T T\ TR /B0
2.2 _ 42 D ( (c15)
P2 -a2 D5 ( 2 _, 2 ) _

T -—;zgz— ap 5 + | Bao kp~ JCy =0
2.2 _ .2 D
L”b_-=a -—ll'--(BQ',22 kT2)05=0
Lo 22 L g

where
2
+ b
p o (a+p)”

(c16)
hab
In addition to equations (C15), four other relations between the
constants are needed and these relations are obtained from the boundary
conditions imposed on the beam.

For a free-free beam undergoing symmetricel vibrations, the boundary
conditions are at the midspan

48 _ o
dx
(c17)
up =0
and at the free end
} a
b i =0 (C18a)
dx
(2 - b)uy + abla +b) L =0 (C18b)
ax

where equation (C18b) is the condition of zero torgue.
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The conditions (C17) and (C18) can be expressed in terms of either
set of constants, by the use of equations (C;S). The condition for a
nontrivial solution gives the frequency equation

° 6*122 - kma)“12 o . (Bc12 + hmz)uga
0 1 0 1
=0 (c19)
oy cosh oy aq sinh o Qp CO8 Gp ~ts 8in ay
(sz - 'Ba,zz) sivh oy (k]:a - Bq.az) cosh oy (kTa + Bcr,la) sin ag (sz + Boalz) cos ay

which reduces to

(kT2 + Balz)ml cosh aq sin ay - (kT2 - Bage)ag sinh ay cos an = O (c20)

The fregquency equation has been obtained for the special case of a
rectangular box beem with web and cover sheets of equal thickness in
order to compare the numerical results from the four-flange solution
with the results from the exact solution. However, the solutlon for

the four-flange box beam with unequal web and cover sheets or with other
boundary conditions may be obtained by means of the same analysis
procedure.
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TABIE 1

NACA TN 3206

COMPARISON OF RESUILTS OBTAINED FROM FOUR-FIANGE SOLUTION WITH

[g = 5.6]

THOSE OBTAINED FROM ELEMENTARY AND EXACT SOLUTIONS

: Elementary Exact solution without Four-flenge
L/ b solution longitudinal inertia solution
First mode kT
2 3,14 3.30 3.31
6 3,14 3.18 3.18
10 3.1k 3.16 3.16
14 3.14 3.15 %.15
Second mode kT
2 6.28 6.98 T.11
6 6.28 6.53 6.5k
10 6.28 6.39 6.40
1k 6.28 6.35 6.35
Third mode knp
2 9.42 10.80 11.01
6 9.42 10.02 10.13
10 9.42 9.78 9.77
14 9.42 9.65 9.63
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(a) Typical cross section. (b) Sign conventions.
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{c) Cantilever beam, (d) Free-free beam.

Figure |— GCoordinate systems and sign conventions.
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Exact solution with {ongitudinal inertia
— — — Exacf solution without fongitudinal inertia
-------- Elemeniary solution
——-—— Warping solution

T [ st

Figure 2 - Influence of pian-form aspect ratio on frequency coefficient for free-free
symmefrical modes, %=3.6.
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Figure 3~ Four-flonge box beam.
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