We investigate the secular evolution of the orbital semi-major axis and
eccentricity due to mass transfer in eccentric binaries, assuming conservation
of total system mass and orbital angular momentum. Assuming a delta function
mass transfer rate centered at periastron, we find rates of secular change of
the orbital semi-major axis and eccentricity which are linearly proportional to
the magnitude of the mass transfer rate at periastron. The rates can be
positive as well as negative, so that the semi-major axis and eccentricity can
increase as well as decrease in time. Adopting a delta-function mass-transfer
rate of 10^{-9} M_\sun {\rm yr}^{-1} at periastron yields orbital evolution
timescales ranging from a few Myr to a Hubble time or more, depending on the
binary mass ratio and orbital eccentricity. Comparison with orbital evolution
timescales due to dissipative tides furthermore shows that tides cannot, in all
cases, circularize the orbit rapidly enough to justify the often adopted
assumption of instantaneous circularization at the onset of mass transfer. The
formalism presented can be incorporated in binary evolution and population
synthesis codes to create a self-consistent treatment of mass transfer in
eccentric binaries.Comment: 16 pages, 8 figures, Accepted by The Astrophysical Journa