9,525 research outputs found
On uniformly rotating fluid drops trapped between two parallel plates
This contribution is about the dynamics of a liquid bridge between two fixed parallel plates. We consider a mathematical model and present some results from the doctoral thesis [10] of the first author. He showed that there is a Poisson bracket and a corresponding Hamiltonian, so that the model equations are in Hamiltonian form. The result generalizes previous results of Lewis et al. on the dynamics of free boundary problems for "free" liquid drops to the case of a drop between two parallel plates, including, especially the effect of capillarity and the angle of contact between the plates and the free fluid surface. Also, we prove the existence of special solutions which represent uniformly rotating fluid ridges, and we present specific stability conditions for these solutions. These results extend work of Concus and Finn [2] and Vogel [18],[19] on static capillarity problems (see also Finn [5]). Using the Hamiltonian structure of the model equations and symmetries of the solutions, the stability conditions can be derived in a systematic way. The ideas that are described will be useful for other situations involving capillarity and free boundary problems as well
Wind turbine generator interaction with conventional diesel generators on Block Island, Rhode Island. Volume 2: Data analysis
Assessing the performance of a MOD-OA horizontal axis wind turbine connected to an isolated diesel utility, a comprehensive data measurement program was conducted on the Block Island Power Company installation on Block Island, Rhode Island. The detailed results of that program focusing on three principal areas of (1) fuel displacement (savings), (2) dynamic interaction between the diesel utility and the wind turbine, (3) effects of three models of wind turbine reactive power control are presented. The approximate two month duration of the data acquisition program conducted in the winter months (February into April 1982) revealed performance during periods of highest wind energy penetration and hence severity of operation. Even under such conditions fuel savings were significant resulting in a fuel reduction of 6.7% while the MOD-OA was generating 10.7% of the total electrical energy. Also, electrical disturbance and interactive effects were of an acceptable level
Wind turbine generator interaction with conventional diesel generators on Block Island, Rhode Island. Volume 1: Executive summary
Primary results are summarized for a three-part study involving the effects of connecting a MOD-OA wind turbine generator to an isolated diesel power system. The MOD-OA installation considered was the third of four experimental nominal 200 kW wind turbines connected to various utilities under the Federal Wind Energy Program and was characterized by the highest wind energy penetration levels of four sites. The study analyses address: fuel displacement, dynamic interaction, and three modes of reactive power control. These analyses all have as their basis the results of the data acquisition program conducted on Block Island, Rhode Island
Perforatationstrauma im Gesichtsschädel. Eine ungewöhnliche Verletzung beim Skifahren
Facial perforation injuries are very rare. We describe a case of a 48-year-old man who sustained a perforation trauma from an 11 cm long wooden tree branch in the middle of the face in a skiing accident. He suffered from additional injuries, such as fractures of the ribs and hand, but was neurologically without pathologic findings and was cardiopulmonary stable.The branch penetrated the head from the sinus maxillaris through the maxilla just missing the internal and external carotid arteries and ending just short of the cervical vertebra. The patient was transported to a center for oral and maxillofacial surgery and underwent several operations.He could return to his normal social and professional life 8 months after the accident
Morphogen Transport in Epithelia
We present a general theoretical framework to discuss mechanisms of morphogen
transport and gradient formation in a cell layer. Trafficking events on the
cellular scale lead to transport on larger scales. We discuss in particular the
case of transcytosis where morphogens undergo repeated rounds of
internalization into cells and recycling. Based on a description on the
cellular scale, we derive effective nonlinear transport equations in one and
two dimensions which are valid on larger scales. We derive analytic expressions
for the concentration dependence of the effective diffusion coefficient and the
effective degradation rate. We discuss the effects of a directional bias on
morphogen transport and those of the coupling of the morphogen and receptor
kinetics. Furthermore, we discuss general properties of cellular transport
processes such as the robustness of gradients and relate our results to recent
experiments on the morphogen Decapentaplegic (Dpp) that acts in the fruit fly
Drosophila
Anisotropy and XKS-splitting from geodynamic models of double subduction: Testing the limits of interpretation
In this study, we develop three-dimensional geodynamic models to predict XKS-splitting for double subduction scenarios characterized by two outward dipping slabs. These models are highly relevant in various realistic settings, such as the central Mediterranean. We focus on the analysis of XKS-splitting, a key geophysical observable used to infer seismic anisotropy and mantle flow patterns predicted from these geodynamic models. Our geodynamic models simulate the concurrent subduction of two identical oceanic plates which are separated by a continental plate. The variation of the separating plate strength, cause a transition from a retreating to a stationary trench. The models provide detailed insights into the temporal evolution of mantle flow patterns, especially the amount of trench parallel flow, induced by these double subduction scenarios. In a second step, we use the well-known D-Rex model (Kaminski et al., 2004) to efficiently estimate the CPO development in response to plastic deformation produced by mantle flow. Based on the results of the D-Rex model, which includes the full elastic tensor of a deformed multiphase polycrystalline mantle aggregate within the three-dimensional model, we obtain synthetic apparent splitting parameters at receivers placed at the surface by applying multiple-layer anisotropic waveform modeling. Employing analytical techniques, we show the ambiguous nature of apparent splitting parameters, as already suggested by previous studies based on numerical modeling. In the light of the results, we postulate that a meaningful inversion, based on the commonly applied 2-layer anisotropic model, requires additional constraints on fast-axis orientation or strength of anisotropy (delay time). Finally, we show that constraints from our texture simulations (i.e., the integrated delay time) can be used to achieve unique 2-layer models that perfectly fit the synthetic observables. Such models could serve as reference for the interpretation of the observations. Our study highlights the necessity of combining geodynamic modeling and XKS-splitting analysis to shed light on complex upper mantle flow patterns such as those that might occur around subduction zones
The non-Gaussian tail of cosmic-shear statistics
Due to gravitational instability, an initially Gaussian density field
develops non-Gaussian features as the Universe evolves. The most prominent
non-Gaussian features are massive haloes, visible as clusters of galaxies. The
distortion of high-redshift galaxy images due to the tidal gravitational field
of the large-scale matter distribution, called cosmic shear, can be used to
investigate the statistical properties of the LSS. In particular, non-Gaussian
properties of the LSS will lead to a non-Gaussian distribution of cosmic-shear
statistics. The aperture mass () statistics, recently introduced as
a measure for cosmic shear, is particularly well suited for measuring these
non-Gaussian properties. In this paper we calculate the highly non-Gaussian
tail of the aperture mass probability distribution, assuming Press-Schechter
theory for the halo abundance and the `universal' density profile of haloes as
obtained from numerical simulations. We find that for values of
much larger than its dispersion, this probability distribution is closely
approximated by an exponential, rather than a Gaussian. We determine the
amplitude and shape of this exponential for various cosmological models and
aperture sizes, and show that wide-field imaging surveys can be used to
distinguish between some of the currently most popular cosmogonies. Our study
here is complementary to earlier cosmic-shear investigations which focussed
more on two-point statistical properties.Comment: 9 pages, 5 figures, submitted to MNRA
Cavity Assisted Nondestructive Laser Cooling of Atomic Qubits
We analyze two configurations for laser cooling of neutral atoms whose
internal states store qubits. The atoms are trapped in an optical lattice which
is placed inside a cavity. We show that the coupling of the atoms to the damped
cavity mode can provide a mechanism which leads to cooling of the motion
without destroying the quantum information.Comment: 12 page
Fragment Flow and the Nuclear Equation of State
We use the Boltzmann-Uehling-Uhlenbeck model with a momentum-dependent
nuclear mean field to simulate the dynamical evolution of heavy ion collisions.
We re-examine the azimuthal anisotropy observable, proposed as sensitive to the
equation of state of nuclear matter. We obtain that this sensitivity is maximal
when the azimuthal anisotropy is calculated for nuclear composite fragments, in
agreement with some previous calculations. As a test case we concentrate on
semi-central collisions at 400 MeV.Comment: 12 pages, ReVTeX 3.0. 12 Postscript figures, uuencoded and appende
Chromospheric Variability in SDSS M Dwarfs. II. Short-Timescale H-alpha Variability
[Abridged] We present the first comprehensive study of short-timescale
chromospheric H-alpha variability in M dwarfs using the individual 15 min
spectroscopic exposures for 52,392 objects from the Sloan Digital Sky Survey.
Our sample contains about 10^3-10^4 objects per spectral type bin in the range
M0-M9, with a total of about 206,000 spectra and a typical number of 3
exposures per object (ranging up to a maximum of 30 exposures). Using this
extensive data set we find that about 16% of the sources exhibit H-alpha
emission in at least one exposure, and of those about 45% exhibit H-alpha
emission in all of the available exposures. Within the sample of objects with
H-alpha emission, only 26% are consistent with non-variable emission,
independent of spectral type. The H-alpha variability, quantified in terms of
the ratio of maximum to minimum H-alpha equivalent width (R_EW), and the ratio
of the standard deviation to the mean (sigma_EW/), exhibits a rapid rise
from M0 to M5, followed by a plateau and a possible decline in M9 objects. In
particular, R_EW increases from a median value of about 1.8 for M0-M3 to about
2.5 for M7-M9, and variability with R_EW>10 is only observed in objects later
than M5. For the combined sample we find that the R_EW values follow an
exponential distribution with N(R_EW) exp[-(R_EW-1)/2]; for M5-M9 objects the
characteristic scale is R_EW-1\approx 2.7, indicative of stronger variability.
In addition, we find that objects with persistent H-alpha emission exhibit
smaller values of R_EW than those with intermittent H-alpha emission. Based on
these results we conclude that H-alpha variability in M dwarfs on timescales of
15 min to 1 hr increases with later spectral type, and that the variability is
larger for intermittent sources.Comment: Submitted to ApJ; 20 pages, 15 figure
- …