398 research outputs found

    The United States Trade Embargo on Mexican Tuna: A Necessary Conservationist Measure or an Unfair Trade Barrier

    Get PDF

    Spin motive forces due to magnetic vortices and domain walls

    Get PDF
    We study spin motive forces, i.e, spin-dependent forces, and voltages induced by time-dependent magnetization textures, for moving magnetic vortices and domain walls. First, we consider the voltage generated by a one-dimensional field-driven domain wall. Next, we perform detailed calculations on field-driven vortex domain walls. We find that the results for the voltage as a function of magnetic field differ between the one-dimensional and vortex domain wall. For the experimentally relevant case of a vortex domain wall, the dependence of voltage on field around Walker breakdown depends qualitatively on the ratio of the so-called β\beta-parameter to the Gilbert damping constant, and thus provides a way to determine this ratio experimentally. We also consider vortices on a magnetic disk in the presence of an AC magnetic field. In this case, the phase difference between field and voltage on the edge is determined by the β\beta parameter, providing another experimental method to determine this quantity.Comment: 8 pages, 9 figures, submitted to PR

    Successful Non-Invasive treatment of stricturing fibrosing colonopathy in an adult patient

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>Fibrosing colonopathy (FC) is a rare entity associated with cystic fibrosis (CF). Until now, patients with stricturing FC have usually been treated surgically. In this instance, we aimed at avoiding surgery by applying a new conservative approach.</p> <p>Methods</p> <p>Case report on an adult with CF who developed persistent abdominal pain due to a non-passable stricture in the right transverse colon. Histology confirmed fibrosing colonopathy.</p> <p>Results</p> <p>Initially we treated the patient with prednisolone pulse therapy and additive antibiotic therapy. For maintenance therapy we administered budesonide. The patient underwent clinical, laboratory and endoscopic follow-up over a three-year period. The stricture healed and was easy to pass. A relapse in the cecum at the ileocecal valve again improved under steroid and antibiotic therapy.</p> <p>Conclusions</p> <p>We present a novel therapeutic approach for advanced stricturing FC in an adult patient which successfully avoided surgery (right hemicolectomy) over a three year follow up.</p

    Resonant Impurity States in the D-Density-Wave Phase

    Full text link
    We study the electronic structure near impurities in the d-density-wave (DDW) state, a possible candidate phase for the pseudo-gap region of the high-temperature superconductors. We show that the local DOS near a non-magnetic impurity in the DDW state is {\it qualitatively} different from that in a superconductor with dx2y2d_{x^2-y^2}-symmetry. Since this result is a robust feature of the DDW phase, it can help to identify the nature of the two different phases recently observed by scanning tunneling microscopy experiments in the superconducting state of underdoped Bi-2212 compounds

    Influence of the interelectrode distance on the production of nanoparticles by means of atmospheric pressure inert gas DC glow discharge

    Get PDF
    This work is aimed at investigating the influence of the inter-electrode spacing on the production rate and size of nanoparticles generated by evaporating a cathode on an atmospheric pressure dc glow discharge. Experiments are conducted in the configuration of two vertically aligned cylindrical electrodes in upward coaxial flow with copper as a consumable cathode and nitrogen as a carrier gas. A constant current of 0.5 A is delivered to the electrodes and the inter-electrode distance spanned from 0.5 to 10 mm. Continuous stable nanoparticle production is attained by optimal coaxial flow convection cooling of the cathode. Both the particle production rate and the primary particle size increase with the inter-electrode spacing up to nearly 5 mm and strongly decrease with an increasing inter-electrode distance beyond 5 mm. Production rates in the range of 1 mg h-1 of very small nanoparticles

    Aerosol Route to Antibacterial Nanosilver Coating of Cotton Fabrics

    Get PDF
    The paper describes a gas phase process for the preparation of cotton fabrics coated with silver nanoparticles as antimicrobial agents. Silver nanoparticles are synthesized by means of atmospheric pressure electrical discharges (spark discharge and glow discharge) in pure inert gases, and the aerosols are passed through cotton fabric samples, where nanoparticles deposit. The particle size distribution of the aerosols is measured online during synthesis. Also, the cristallinity, size and morphology of the silver particles are analyzed. The mean size of the primary particles of silver varies from 4 nm to 18 nm, depending upon the type of discharge, the nature and flow rate of the gas. The bactericidal activity of the cotton samples doped with silver nanoparticles is assessed following the ISO 20743 method. All cotton samples show significant bactericidal property, although it degrades with increasing primary particle size and particle agglomeration. This purely physical aerosol route is a promising sustainable method for nanocoating of textiles

    Hidden order in bosonic gases confined in one dimensional optical lattices

    Full text link
    We analyze the effective Hamiltonian arising from a suitable power series expansion of the overlap integrals of Wannier functions for confined bosonic atoms in a 1d optical lattice. For certain constraints between the coupling constants, we construct an explicit relation between such an effective bosonic Hamiltonian and the integrable spin-SS anisotropic Heisenberg model. Therefore the former results to be integrable by construction. The field theory is governed by an anisotropic non linear σ\sigma-model with singlet and triplet massive excitations; such a result holds also in the generic non-integrable cases. The criticality of the bosonic system is investigated. The schematic phase diagram is drawn. Our study is shedding light on the hidden symmetry of the Haldane type for one dimensional bosons.Comment: 5 pages; 1 eps figure. Revised version, to be published in New. J. Phy

    Online-growth measurements on the generation of metal nanoaerosol and their offline structural properties

    Get PDF
    93-98Aerosol, which is intentionally generated in the laboratory, is utilized to synthesize nanoparticles. As the size of suspended nanoparticles in nano regime, therefore, purposely generated aerosol is termed as nanoaerosol. The present study demonstrates the formation metal nanoparticles in gas-phase. For this purpose, the initial condition; is to create nanoaerosol that is, suspension of tiny metal particles in gas. By evaporating a metal source in the presence of gas, creates the condition of supersaturation and then by nucleation and condensation forms stable nuclei, which grow in size to form primary particles in gas. A high-temperature furnace is utilized to evaporate metal e.g. palladium with 10% silver (PdAg), in the high purity nitrogen, is known as a carrier gas. During the sparking process, growth of the PdAg nanoaerosol is monitored online by a scanning mobility particle sizer, as a function of different parameters. Size-distribution in produced nanoaerosol shifts towards larger mobility equivalent diameter value from 7.83 to 42.6 nm along-with the increase in number concentration, on increasing the evaporation temperature from 1200 to 1400 °C. To study the effect of sintering temperature on particle size, size-fractionation by a differential mobility analyzer and in-flight sintering of PdAg nanoaerosol have been carried out. On increasing the sintering temperature, the size of selected PdAg nanoparticles reduces. The geometric mean mobility equivalent diameters of fractionated PdAg nanoparticles of 17.9, 25.3 and 30.9 nm reduces to 15.2, 19.4 and 21.7 nm, respectively, due to the compaction. The value of geometric standard deviation is approximately 1.10, which reflects the monodisperse nature of PdAg nanoparticles in the generated nanoaerosol. An electrostatic precipitation technique is utilized to separate out PdAg nanoparticles from nanoaerosol onto suitable substrates. Formation of spherical and mono-crystalline PdAg nanoparticles is revealed by TEM studies
    corecore