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We study spin motive forces, that is, spin-dependent forces and voltages induced by time-dependent
magnetization textures, for moving magnetic vortices and domain walls. First, we consider the voltage generated
by a one-dimensional field-driven domain wall. Next, we perform detailed calculations on field-driven vortex
domain walls. We find that the results for the voltage as a function of magnetic field differ between the
one-dimensional and vortex domain walls. For the experimentally relevant case of a vortex domain wall, the
dependence of voltage on the field around Walker breakdown depends qualitatively on the ratio of the so-called
β parameter to the Gilbert damping constant and thus provides a way to determine this ratio experimentally. We
also consider vortices on a magnetic disk in the presence of an ac magnetic field. In this case, the phase difference
between field and voltage on the edge is determined by the β parameter, providing another experimental method
to determine this quantity.

DOI: 10.1103/PhysRevB.84.014414 PACS number(s): 75.60.Ch, 72.15.Gd, 72.25.Ba

I. INTRODUCTION

One of the recent developments in spintronics is the study
of spin motive forces1 and spin pumping.2 These effects lead
to the generation of charge and spin currents due to time-
dependent magnetization textures. The idea of spin motive
forces due to domain walls is easily understood on an intuitive
level: If an applied current induces domain-wall motion,3–8

Onsager’s reciprocity theorem tells us that a moving domain
wall will induce a current. This idea was already put forward
in the eighties by Berger.9 In the case of a domain wall
driven by large magnetic fields (i.e., well above the so-called
Walker breakdown field), a fairly simple approach to the
problem is justified where one goes to a frame of reference
in which the spin quantization axis follows the magnetization
texture.10,11 This transformation gives rise to a vector potential
from which effective electric and magnetic fields are derived.
Experimentally, the domain-wall-induced voltage recently has
been measured above Walker breakdown,12 and the results are
consistent with this approach. It has also been shown that the
induced voltage well above Walker breakdown is determined
from a topological argument that follows from the properties
of the vector potential.13

This approach captures only the reactive contribution to
the spin motive forces. When the velocity of the domain
wall is below or just above Walker breakdown, a theory is
needed that includes more contributions to the spin motive
forces. Renewed interest has shed light on the nonadiabatic
and dissipative contributions to the spin motive forces14–16

that are important in this regime. In this paper, we study this
regime.

The article is organized as follows. In Sec. II, we summarize
earlier results that give a general framework to compute elec-
trochemical potentials for given time-dependent magnetization
textures. In Sec. III, we consider an analytical model for
a one-dimensional domain wall and numerically determine
the form of the spin accumulation and the electrochemical
potential. The results agree with the known results for the
potential difference induced by a moving one-dimensional

domain wall.14 In Sec. IV, we turn to two-dimensional systems
and study a vortex domain wall in a permalloy strip. We
use a micromagnetic simulator to obtain the magnetization
dynamics and numerically evaluate the reactive and dissipative
contributions to the voltage below and just above Walker
breakdown and compare them with experimental results.12

Another example of a two-dimensional system is a vortex on
a disk, which we treat in Sec. V. For sufficiently small disks,
the magnetic configuration is a vortex. Both experimentally
and theoretically, it has been shown that a vortex driven by
an oscillating magnetic field will rotate around its equilibrium
position.17–21 This gives rise to a voltage difference between
the disk edge and center, as was recently discussed by Ohe
et al.22 Here, we extend this study by including both the
reactive and the dissipative contributions to the voltage, which
turn out to have a relative phase difference. This gives rise to
a phase difference between the drive field and voltage that is
determined by the so-called β parameter.

II. MODEL

The spin motive force field F(�x) induced by a time-
dependent magnetization texture that is characterized at
position �x by a unit-vector magnetization direction m(�x,t)
is given by14,15

Fi = h̄

2
[m · (∂tm × ∇im) + β(∂tm · ∇im)] . (1)

This force field acts in this form on the majority spins and
with the opposite sign on minority spins. In this expression,
the first term is the well-known reactive term.1 The second
term describes dissipative effects due to spin relaxation14,15

and is proportional to the phenomenological β parameter,
which plays an important role in current-induced domain-wall
motion.3–8 The spin accumulation μs in the system follows
from15

1

λ2
sd

μs − ∇2μs = −∇ · F, (2)
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where λsd = √
τD is the spin-diffusion length, with τ being

a characteristic spin-flip time and D being the effective spin-
diffusion constant. Here, we assume that the spin-relaxation
time is much smaller than the time scale for magnetization
dynamics. The total electrochemical potential μ that is
generated by the spin accumulation due to a nonzero current
polarization in the system is computed from15

−∇2μ = P(∇2μs − ∇ · F), (3)

where the current polarization is given by P = (σ↑ −
σ↓)/(σ↑ + σ↓). Note that there is no charge accumulation for
σ↑ = σ↓, with σ↑(σ↓) being the conductivity of the majority
(minority) spin electrons.

The magnetization dynamics is found from the Landau-
Lifschitz-Gilbert (LLG) equation given by

∂m
∂t

= m ×
(

− ∂Emm[m]

h̄∂m

)
− αm × ∂m

∂t
. (4)

Here, Emm[m] is the micromagnetic energy functional that
includes exchange interaction, anisotropy, and external field,
and α is the Gilbert damping constant.

III. ONE-DIMENSIONAL DOMAIN WALL

For one-dimensional problems, the voltage difference can
be easily found. For example, an analytical expression for
the electric current (which is the open-circuit equivalent of
the chemical-potential difference) was obtained by one of
us for an analytical model for a one-dimensional driven
domain wall.14 In this section, we solve the potential problem
for a one-dimensional domain wall and obtain the explicit
position dependence of the spin accumulation and the chemical
potential.

A one-dimensional domain wall (∂ym = ∂zm = 0) is de-
scribed by23

θ (x,t) = 2arctan{eQ[x−X(t)]/λ}, φ(x) = 0, (5)

with m = (sin θ cos φ, sin θ sin φ, cos θ ). Here, Q = ±1 is
called the topological charge of the domain wall since it
indicates the way in which an external field affects the
domain-wall motion (i.e., a field in the direction +ẑ will move
a domain wall in the direction Qx̂). Here, we choose Q = 1.
The domain-wall width is indicated by λ.

To study the time evolution of a domain wall, we let
φ(x) → φ0(t) so that the wall is described by time-dependent
collective coordinates {X(t),φ0(t)}, called position and chiral-
ity, respectively. For external fields smaller than the Walker
breakdown field, there is no domain-wall precession (i.e.,
the chirality is constant), and the domain-wall velocity v is
constant so that ∂tm = −v∂xm. Since ∂ym = ∂zm = 0, we
immediately see that the first term on the right-hand side of
Eq. (1) vanishes and that the force is pointing along the x

axis. We then find that Fx = (βvh̄/2)/(λ2 cosh[x/λ]2). Due to
symmetry, we have ∂yμ = ∂zμ = ∂yμs = ∂zμs = 0. In Figs. 1
and 2, we plot the spin accumulation and the electrochemical
potential as a function of x. From Fig. 2 we see that the
total potential difference 
μ = μ(x → ∞) − μ(x → −∞)
is independent of the spin-diffusion length and linear in the

-10 -5 5 10

x

-1

-0.5

0.5

1

2 μs

β v

sd 100

sd 10

sd 1

2 3

β vs 
.F

FIG. 1. (Color online) Spin accumulation as a function of position
for several values of the spin-diffusion length. The black dotted line
gives the value of the source term. The spin accumulation tends to
zero for x → ±∞.

parameter β: 
μ = h̄Pβv/λ. Note that this result is only valid
below Walker breakdown.

To find the voltage for all fields B, we generalize the
results for the voltage difference in Ref. 14 for general
domain-wall charge Q. A general expression for the voltage
in one dimension is given by14


μ = − h̄P
2|e|

∫
dx [m · (∂tm × ∂xm) + β∂tm · ∂xm] . (6)

We insert the ansatz [Eq. (5) with φ(x) = φ0(t)] into Eq. (6)
and find


μ = − h̄P
2|e|

(
Qφ̇0 + β

Ẋ

λ

)
. (7)

To find a time-averaged value for the voltage, we consider
the equations of motion for a domain wall that is driven by
a transverse magnetic field B,23–25 contributing to the energy
−gB · m, with g > 0. The equations of motion for X(t) and

-10 -5 5 10
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β v P

sd 100
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FIG. 2. (Color online) Electrochemical potential as a function of
position. Note that the potential is proportional to the polarization
and that on the horizontal axis the position x is multiplied by the
spin-diffusion length.
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φ0(t) are ultimately derived from the LLG equation in Eq. (4)
and given by

(1 + α2)φ̇0 = −gB

h̄
− α

K⊥
2h̄

sin(2φ0),
(8)

(1 + α2)
Ẋ

λ
= αQ

gB

h̄
− Q

K⊥
2h̄

sin(2φ0).

Here, K⊥ is the out-of-plane anisotropy constant. These
equations are solved by

〈φ̇0〉 = − sign(B)

1 + α2
Re

[√(
gB

h̄

)2

−
(

αK⊥
2h̄

)2]
,

(9)

〈Ẋ〉 = λQ

1 + α2

(
gB

αh̄
+ 〈φ̇0〉

α

)
,

where 〈· · · 〉 denotes a time average. It follows that the voltage
difference for general topological charge is


μ = −sign(B)
Q

1 + α2

h̄P
2|e|

{
β

α

g|B|
h̄

−
(

1 + β

α

)
Re

[√(
gB

h̄

)2

−
(

αK⊥
2h̄

)2]}
. (10)

Note that the overall prefactor sign(B)Q makes sense: In-
version of the magnetic field should have the same result as
inversion of the topological charge.

In these equations, we used a domain-wall ansatz with
magnetization perpendicular to the wire direction. Using the
topological argument by Yang et al.,13 one can show that the
result is more general and holds also for head-to-head and
tail-to-tail domain walls. Therefore, for a one-dimensional
domain wall, the reactive and dissipative contributions (i.e.,
the contributions with and without β in the above expression)
to the voltage always have opposite signs.

IV. VORTEX DOMAIN WALL

For more complicated two-dimensional structures, the
spin-motive force field can have rotation and the simplified
expression in Eq. (6) is no longer valid, so that we need to
treat the full potential problem in Eqs. (1)–(3). Motivated by
recent experimental results,12 we consider in this section the
voltage induced by a moving vortex domain wall.

We study the magnetization dynamics using a micromag-
netic simulator26 from which we obtain the magnetization
m(�x,t). This simulator solves the LLG equation in Eq. (4).
For comparison with the experiment by Yang et al.,12 we
simulate a permalloy sample that has the same dimensions
as this experiment, i.e. 20 nm × 500 nm × 32 μm, which
is divided in 1 × 128 × 8192 lattice points. On this sample,
we drive a head-to-head vortex domain wall by means of a
magnetic field that is pointing from right to left, such that the
vortex moves from right to left. For several field strengths, we
obtain the magnetization m and its time derivative, that allow
us to compute the force field F at each lattice point. Next,
we solve the matrix problem that is the discrete equivalent to
the potential problem in Eqs. (2) and (3). For details on this
calculation, see Appendix B.

We first investigate the velocity of the vortex domain wall
as a function of the applied field. We use the value α = 0.02

0 0.4 0.8 1.2 1.6
Field mT

0

50

100

150

200

250

300

V
el

oc
it

y
m

s

FIG. 3. (Color online) Velocity of the vortex domain wall as a
function of the magnetic field strength for α = 0.02. Above Walker
breakdown, the velocity is time averaged. The line is a guide to the eye.

for the Gilbert-damping parameter to obtain the curve in
Fig. 3. The decrease in velocity for B = 1.5 mT signals Walker
breakdown. Indeed, up to fields B = 1.4 mT, the vortex moves
parallel to the long direction of the sample. For B = 1.5 mT,
the vortex domain-wall motion is more complicated and has a
perpendicular component.27,28 We therefore expect that below
Walker breakdown, just like for the one-dimensional domain
wall, the vortex domain wall has only a dissipative contribution
to the voltage. Comparison with the experimental results of
Ref. 12 shows that our velocity is higher by roughly a factor of
2. This might be partly caused by a difference in damping and
partly by the presence of defects in the experiment which cause
pinning and therefore a decrease of velocity. The exact value
of the Walker breakdown field is hard to compare, since this
depends also on the exact value of the anisotropy. Nonetheless
our value for the Walker breakdown field is of the same order
as that of Ref. 12. Moreover, what is more important is the
dependence of wall velocity and wall-induced voltage on the
magnetic field normalized to the Walker breakdown field, as
these results depend less on system details.

An example of a specific form of the electrochemical
potential on the sample due to a field-driven vortex domain
wall is depicted in Fig. 4. We see that there is a clear voltage
drop along the sample, like in the one-dimensional model.

500
1000

1500
2000

length

50

100

width

-5

0

5
μ μV

500
1000

1500length

FIG. 4. (Color online) Electrochemical potential as a function of
position for a moving vortex domain wall on the sample. The numbers
on the horizontal axes correspond to lattice points with separation
a = 3.9 nm. This specific figure is for α = 0.02, H = 0.8 mT (i.e.,
below Walker breakdown), P = 1, and λsd = a. Note that the peak
signals the position of the vortex core.
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-200
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velocityreac
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FIG. 5. (Color online) Reactive (blue squares) and dissipative
(red triangles) contributions to the voltage as a function of time. The
numbers on the horizontal axis correspond to time steps of 0.565 ns.
The green line gives the velocity along the sample, and it is scaled
to show the correlation with the voltage. These curves are taken for
α = 0.02, β = α and field strength B = 1.6 mT.

Additionally, the potential shows large gradients around the
vortex core and varies along the transverse direction of the
sample. For each field strength, we compute the voltage
difference as a function of time. For field strengths below
Walker breakdown, we find that, as expected, only the
dissipative term contributes and the voltage difference rapidly
approaches a constant value in time. This is understood from
the fact that in this regime, the wall velocity is constant after
a short time. The dissipative contribution to the voltage is
closely related to the velocity along the sample, as can be seen
in Fig. 5.

Above Walker breakdown, the reactive term contributes. We
find that for β = α, the oscillations in the reactive component
compensate for the oscillations in the dissipative component. If
we look closely at Fig. 5, we see that the length of the periods is
not exactly equal. The periods correspond to a vortex moving
to the upper or lower edges of the sample. The difference is
due to the initial conditions of our simulation. We average the
voltage difference over time to arrive at the result in Fig. 6. We
see that the dissipative contribution becomes smaller for fields
larger than the Walker breakdown field, whereas the reactive
contribution has the same sign and increases. In fact, for
β = α, the reduction of the dissipative contribution is exactly
compensated by the reactive contribution. The β dependence
is illustrated in Fig. 7. The behavior is fundamentally different
from the one-dimensional domain-wall situation: For the
vortex domain wall, the dissipative contribution has the same
sign as the reactive contribution.
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Field mT
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FIG. 6. (Color online) Voltage drop along the sample for α =
0.02 and β = α.
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FIG. 7. (Color online) Voltage drop along the sample for α =
0.02 and several values for β.

In order to understand the relative sign, we now discuss
general vortex domain walls. A single vortex (i.e., with
vorticity q = +1) is described by two parameters: The charge
p = ±1 indicates whether the central magnetic moment points
in the positive or negative z direction and the chirality C

indicates whether the magnetic moments align in a clockwise
(C = −1) or anticlockwise (C = +1) fashion. We have a
vortex that is oriented clockwise C = −1. The relative sign
is explained from a naive computation of the voltage above
Walker breakdown that does not take into account the rotation
of the spin motive force field


μ ∝ −
∫

dx [β∂tm · ∂xm + m · (∂tm × ∂xm)]

= βvx

∫
dx(∂xm)2 + vy

∫
dxm · (∂ym × ∂xm)

∝ (βδ + 1)vx, (11)

where δ is a positive number, and we used that above
Walker breakdown m  m(x − vxt,y − vyt) with vx �= 0 and
vy �= 0. Note that if vy = 0 (below Walker breakdown), the
reactive term (i.e., the second term in the above expression)
indeed vanishes. We used in the last line that above Walker
breakdown vx ∝ −pvy and

∫
dxm · (∂ym × ∂xm) ∝ −p. The

former equality is understood from a geometric consideration:
Consider a sample with a vortex characterized by C = 1, p =
1, and vxvy < 0. By symmetry, this is equivalent to C = −1,
p = −1, and vxvy > 0. It is therefore clear that the sign of vxvy

depends on either the polarization or the handedness of the
vortex. Since we know from the vortex domain-wall dynamics
that reversal of the polarization reverses the perpendicular
velocity,12 we conclude that vxvy does not depend on the
handedness of the vortex. The latter equality is understood
from a similar argument:

∫∫
dxdym · (∂ym × ∂xm) changes

sign under the transformation m → −m. During this trans-
formation, both p → −p and C → −C, and therefore their
product cannot account for the total sign reversal. Therefore,
the integral depends on the polarization13 but not on the
handedness of the vortex. The positive number δ is obtained
from our numerical simulation, which suggests that the
magnetic-field dependence of the voltage is


μ = βB × constant + (1 − β/α)|
μreactive|. (12)

Note that the sign of the relative contributions can also be
obtained using the topological argument by Yang et al.,13

which gives the same result.
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We compare our results in Fig. 7 with the experiment by
Yang et al.12 If we assume that the voltage below Walker
breakdown lies roughly on the same line as the voltages above
Walker breakdown, their results suggest a slope of 10 nV/Oe.
For P ∼ 0.8, our results suggest a slope of (β/α)14 nV/Oe.
Taking into account our higher velocity, we find that β in the
experiment is somewhat larger than α. The decrease in slope
of the voltage in Ref. 12 as Walker breakdown is approached
from above also suggests β > α.

In conclusion, the behavior of the voltage around Walker
breakdown allows us to determine the ratio β/α. In experiment,
the potential difference as a function of the applied magnetic
field would show an upturn or downturn around Walker
breakdown as in Fig. 7, which corresponds to β < α and
β > α, respectively.

V. MAGNETIC VORTEX ON A DISK

On small disks (of micrometer scale and smaller) of
ferromagnetic material, the lowest energy configuration is a
vortex. It has been shown that one can let the vortex rotate
around its equilibrium position by applying an ac magnetic
field.17–21 This motion gives rise via Eq. (1) to a spin motive
force on the spins, which induces a voltage on the edge of
the disk relative to a fixed reference voltage (e.g., the disk
center). Ohe et al.22 have shown that the reactive contribution
to the spin motive force field can be seen as a dipole that is
pointing in the radial direction; that is, the divergence of the
force field consists of a positive and a negative peak along the
radial direction (note that the divergence of the force field can
be seen as an effective charge). Rotation of this dipole gives
rise to an oscillating voltage on the edge of the sample. Here,
we consider also the dissipative contribution to the voltage.

We consider a vortex on a disk with radius R that moves
around its equilibrium position (i.e., the center of the disk) at
a distance r0 from the center of the disk with frequency ω. We
use as a boundary condition that the magnetization on the edge
of the disk is pointing perpendicular to the radial direction. In
equilibrium, the micromagnetic energy density of the form
−Jm · ∇2m − K⊥m2

z is minimized by

mx(x,y) = −y√
x2 + y2

cos[2 arctan(e−C
√

x2+y2/κ )]

my(x,y) = x√
x2 + y2

cos[2 arctan(e−C
√

x2+y2/κ )], (13)

mz(x,y) = p sin[2 arctan(e
√

x2+y2/κ )],

where the center of the vortex is chosen at x = y = 0.
Here κ = √

K⊥/J is the typical width of the vortex core.
For permalloy this length scale is of the order ∼10 nm.
The parameters p and C are defined as before, and for
definiteness we choose p = 1, C = −1. To describe clockwise
circular motion of the vortex around its equilibrium position
at fixed radius r0, we substitute x → x − r0 sin(ωt) and
y → y − r0 cos(ωt). Note that we assume that the form of
the vortex is not changed by the motion, which is a good
approximation for r0 � R.

From the magnetization in Eq. (13), we compute the force
field using Eq. (1). The reactive and dissipative contributions
to the divergence of the force field are shown in Fig. 8. The

π 0 π 0 π
Angle

0

0.05

0.1

r
R

FIG. 8. The reactive (left) and dissipative (right) contributions to
the divergence of the force field. White denotes positive values; black
denotes negative values. The reactive contribution can be seen as a
dipole in the radial direction. The dissipative contribution is a dipole
perpendicular to the radial direction.

direction of the dipoles follows directly from Eq. (1) if we
realize that for our system −∂tm · �∇m = �v(∂v̂m)2 is always
pointing in the direction of the velocity, which shows that the
dissipative contribution points along the velocity. Likewise,
the reactive contribution is always pointing perpendicular to
the velocity.

From the relative orientations of the effective dipoles,
we expect that the peaks in the reactive and dissipative
contributions to the voltage on the edge will differ by a phase
of approximately π/2 (for r0/R → 0 this is exact). We divide
our sample in 1000 rings and 100 angles and use the general
method in Appendix B to find the voltage on the edge shown
in Fig. 9. To compare with Ref. 22, we take a frequency
ω/(2π ) = 300 MHz andP = 0.8, which yields amplitudes for
the reactive contribution of microvolts on the edge. However,
Ohe et al. suggest that voltage probes that are placed closer to
the vortex core measure a higher voltage. This indeed increases
the voltage up to order ∼10 μV at r = 2r0. Placing the leads
much closer to the vortex core does not seem to be realistic
because of the size of the vortex. Since the voltage scales with
velocity, it can also be increased by a larger radius of rotation,
that is, by applying larger magnetic fields. However, for disks
larger than 1 μm, the vortex structure is lost.

0 π 2 π 3 π 4 π
ω t

-15
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total

diss β
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FIG. 9. (Color online) The reactive (red dotted curve) and
dissipative (blue dashed curve) contributions to the voltage difference
between opposite points on the edge of the disk. The green line
gives the total voltage difference 
μtotal = 
μreac + 
μdiss, in this
example for β = 0.4. We used r0 = 10λsd, R = 100λsd, and κ = λsd.
For realistic spin-diffusion length λsd  5 nm, these parameter values
agree with the system of Ohe et al.22
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The dissipative contribution becomes important for large
values of β. In principle, it is possible to determine β by
looking at the shift of the peak in the total voltage with
respect to the peak in the reactive contribution, which is in
turn determined by the phase of the applied magnetic field. The
phase difference between applied field and measured voltage
then behaves as tan(
φ) ∝ β.

VI. DISCUSSION AND CONCLUSION

We have investigated the voltage that is induced by a
field-driven vortex domain wall in detail. In contrast to a
one-dimensional model of a domain wall, the reactive and
dissipative contributions to the voltage have the same sign.
The qualitative differences for different values of β provide a
way to determine the ratio β/α experimentally by measuring
the wall-induced voltage as a function of magnetic field. To
this end, we hope that the experimental results in Ref. 12 in the
near future will be extended to fields below Walker breakdown,
which is challenging as the voltages become smaller with
smaller fields.

We also studied a magnetic vortex on a disk. When the
vortex undergoes a circular motion, a voltage is induced in the
sample. Earlier work computed the reactive voltage on the edge
of the disk,22 and here we include also the dissipative contribu-
tion to the voltage. We find that the phase difference between
voltage and ac driving field is determined by the β parameter.
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APPENDIX A: BOUNDARY CONDITIONS

As a boundary condition for the potential problems,
we demand that the total spin current and charge current
perpendicular to the upper and lower boundaries are zero:
j⊥

s = j⊥
↑ − j⊥

↓ = 0 and j⊥ = j⊥
↑ + j⊥

↓ = 0. Therefore, the
majority and minority spin currents are necessarily zero. They
are given by j↑ = σ↑(F − ∇μ↑) and j↓ = σ↓(−F − ∇μ↓).
From this, the boundary conditions on the derivatives of
the potentials follow as ∂⊥μs = ∂⊥(μ↑ − μ↓)/2 = F and
∂⊥μ = ∂⊥(μ↑ + μ↓)/2 = 0. We consider a two-dimensional
sample that is infinitely long in the x direction and of finite
size 2� in the y direction; the boundary conditions are

∂yμs(x,y = ±�) = Fy(x,y = ±�). (A1)

To measure the induced voltage, we also put the derivatives of
the potential at infinity to zero so that the boundary conditions
for the electrochemical potential are

∂yμ(x,y = ±�) = 0,∂xμ(x → ±∞,y) = 0. (A2)

APPENDIX B: POTENTIAL PROBLEM ON A LATTICE

We consider a two-dimensional lattice, where we have spin
accumulation μ

i,j
s and an electrochemical potential μi,j at sites

i,j . Between sites (i,j ) and (i,j + 1), there can be a particle
current density of majority spins

j
i,j+1/2
↑,ĵ = σ↑

(
F

i,j+1/2
ĵ + μ

i,j

↑ − μ
i,j+1
↑

a
i,j+1/2
ĵ

)

= σ↑
(
F

i,j+1/2
ĵ − δĵμ

i,j+1/2
↑

)
, (B1)

with a
i,j+1/2
ĵ being the lattice spacing in the ĵ direction

between sites (i,j ) and (i,j + 1) and a particle current density
of minority spins being

j
i,j+1/2
↓,ĵ = σ↓

(
− F

i,j+1/2
ĵ + μ

i,j

↓ − μ
i,j+1
↓

a
i,j+1/2
ĵ

)

= σ↓
( − F

i,j+1/2
ĵ − δĵμ

i,j+1/2
↑

)
, (B2)

and equivalently for currents in the ı̂ direction. The deriva-
tive δĵ is defined as δĵO

i,j = (Oi,j+1/2 − Oi,j−1/2)/ai,j

ĵ , and
likewise for δı̂. Note that upper indices (i,j ) denote a position
on the lattices and lower indices ı̂ or ĵ denote a direction. We
can write μ↑ = μ + μs and μ↓ = μ − μs. The continuity-like
equations for the density of majority and minority spins are
(note that spins move in the direction of the current)

Ai,j
n

i,j

↑↓
τ

= −
(�i,j j
i,j

↑↓ )

|e| , (B3)

with characteristic spin-flip time τ and with the dimensionless
operator 
 given by


Oi,j = O
i+1/2,j

ı̂ − O
i−1/2,j

ı̂ + O
i,j+1/2
ĵ − O

i,j−1/2
ĵ . (B4)

These definitions allows for nonsquare lattices with sides at
position (i ± 1/2,j ) or (i,j ± 1/2) that have length �

i±1/2,j

ı̂

or �
i,j±1/2
ĵ (lower index denotes the normal direction), respec-

tively, and the area of the site itself given by Ai,j .
The equation for the electrochemical potential is obtained

from the continuity equation

0 = −|e|Ai,j
n

i,j

↑ + n
i,j

↓
τ

= 
[�i,j (j i,j

↑ + j
i,j

↓ )]

= σ↑
[�i,j (F i,j − δμ
i,j

↑ )] + σ↓
[�i,j (−F i,j − δμ
i,j

↓ )]

= (σ↑ + σ↓)

{
�i,j

[ − δμi,j + P
(
F i,j − δμi,j

s

)]}
,

→ 
(�i,j δμi,j ) = P

[
�i,j

(
F i,j − δμi,j

s

)]
, (B5)

where the current polarization is given by P = (σ↑ −
σ↓)/(σ↑ + σ↓). This result was already obtained for a con-
tinuous system in Ref. 15. To find an equation for the spin
accumulation, we write

−|e|Ai,j
n

i,j

↑ − n
i,j

↓
τ

= 
[�i,j (j i,j

↑ − j
i,j

↓ )]

= σ↑
[�i,j (F i,j − δμ
i,j

↑ )] − σ↓
[�i,j (−F i,j − δμ
i,j

↓ )]

= (σ↑ + σ↓)

{
�i,j

[
F i,j − δμi,j

s − Pδμi,j
]}

= (σ↑ + σ↓)(1 − P2)

[
�i,j

(
F i,j − δμi,j

s

)]
. (B6)

If we compare this in the case of a square lattice to the
expression in Ref. 15,

1

λ2
sd

μs − ∇2μs = −∇ · F, (B7)
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we find that the density of spins that pile up can be ex-
pressed in terms of the spin accumulation as (ni,j

↑ − n
i,j

↓ )/τ =
(σ↑ + σ↓)(1 − P2)μi,j

s /(|e|λ2
sd). We insert this expression to

find that the spin accumulation on a lattice is determined by

− 1

λ2
sd

μi,j
s = 1

Ai,j



[
�i,j

(
F i,j − δμi,j

s

)]
. (B8)
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