25 research outputs found

    Short-time scaling behavior of growing interfaces

    Full text link
    The short-time evolution of a growing interface is studied within the framework of the dynamic renormalization group approach for the Kadar-Parisi-Zhang (KPZ) equation and for an idealized continuum model of molecular beam epitaxy (MBE). The scaling behavior of response and correlation functions is reminiscent of the ``initial slip'' behavior found in purely dissipative critical relaxation (model A) and critical relaxation with conserved order parameter (model B), respectively. Unlike model A the initial slip exponent for the KPZ equation can be expressed by the dynamical exponent z. In 1+1 dimensions, for which z is known exactly, the analytical theory for the KPZ equation is confirmed by a Monte-Carlo simulation of a simple ballistic deposition model. In 2+1 dimensions z is estimated from the short-time evolution of the correlation function.Comment: 27 pages LaTeX with epsf style, 4 figures in eps format, submitted to Phys. Rev.

    A pseudo-spectral method for the Kardar-Parisi-Zhang equation

    Full text link
    We discuss a numerical scheme to solve the continuum Kardar-Parisi-Zhang equation in generic spatial dimensions. It is based on a momentum-space discretization of the continuum equation and on a pseudo-spectral approximation of the non-linear term. The method is tested in (1+1)- and (2+1)- dimensions, where it is shown to reproduce the current most reliable estimates of the critical exponents based on Restricted Solid-on-Solid simulations. In particular it allows the computations of various correlation and structure functions with high degree of numerical accuracy. Some deficiencies which are common to all previously used finite-difference schemes are pointed out and the usefulness of the present approach in this respect is discussed.Comment: 12 pages, 13 .eps figures, revetx4. A few equations have been corrected. Erratum sent to Phys. Rev.

    Nonequilibrium critical dynamics of the relaxational models C and D

    Full text link
    We investigate the critical dynamics of the nn-component relaxational models C and D which incorporate the coupling of a nonconserved and conserved order parameter S, respectively, to the conserved energy density rho, under nonequilibrium conditions by means of the dynamical renormalization group. Detailed balance violations can be implemented isotropically by allowing for different effective temperatures for the heat baths coupling to the slow modes. In the case of model D with conserved order parameter, the energy density fluctuations can be integrated out. For model C with scalar order parameter, in equilibrium governed by strong dynamic scaling (z_S = z_rho), we find no genuine nonequilibrium fixed point. The nonequilibrium critical dynamics of model C with n = 1 thus follows the behavior of other systems with nonconserved order parameter wherein detailed balance becomes effectively restored at the phase transition. For n >= 4, the energy density decouples from the order parameter. However, for n = 2 and n = 3, in the weak dynamic scaling regime (z_S <= z_rho) entire lines of genuine nonequilibrium model C fixed points emerge to one-loop order, which are characterized by continuously varying critical exponents. Similarly, the nonequilibrium model C with spatially anisotropic noise and n < 4 allows for continuously varying exponents, yet with strong dynamic scaling. Subjecting model D to anisotropic nonequilibrium perturbations leads to genuinely different critical behavior with softening only in subsectors of momentum space and correspondingly anisotropic scaling exponents. Similar to the two-temperature model B the effective theory at criticality can be cast into an equilibrium model D dynamics, albeit incorporating long-range interactions of the uniaxial dipolar type.Comment: Revtex, 23 pages, 5 eps figures included (minor additions), to appear in Phys. Rev.

    Interface Scaling in the Contact Process

    Full text link
    Scaling properties of an interface representation of the critical contact process are studied in dimensions 1 - 3. Simulations confirm the scaling relation beta_W = 1 - theta between the interface-width growth exponent beta_W and the exponent theta governing the decay of the order parameter. A scaling property of the height distribution, which serves as the basis for this relation, is also verified. The height-height correlation function shows clear signs of anomalous scaling, in accord with Lopez' analysis [Phys. Rev. Lett. 83, 4594 (1999)], but no evidence of multiscaling.Comment: 10 pages, 9 figure

    Vortex wandering in a forest of splayed columnar defects

    Full text link
    We investigate the scaling properties of single flux lines in a random pinning landscape consisting of splayed columnar defects. Such correlated defects can be injected into Type II superconductors by inducing nuclear fission or via direct heavy ion irradiation. The result is often very efficient pinning of the vortices which gives, e.g., a strongly enhanced critical current. The wandering exponent \zeta and the free energy exponent \omega of a single flux line in such a disordered environment are obtained analytically from scaling arguments combined with extreme-value statistics. In contrast to the case of point disorder, where these exponents are universal, we find a dependence of the exponents on details in the probability distribution of the low lying energies of the columnar defects. The analytical results show excellent agreement with numerical transfer matrix calculations in two and three dimensions.Comment: 11 pages, 9 figure

    Critical Behavior of O(n)-symmetric Systems With Reversible Mode-coupling Terms: Stability Against Detailed-balance Violation

    Full text link
    We investigate nonequilibrium critical properties of O(n)O(n)-symmetric models with reversible mode-coupling terms. Specifically, a variant of the model of Sasv\'ari, Schwabl, and Sz\'epfalusy is studied, where violation of detailed balance is incorporated by allowing the order parameter and the dynamically coupled conserved quantities to be governed by heat baths of different temperatures TST_S and TMT_M, respectively. Dynamic perturbation theory and the field-theoretic renormalization group are applied to one-loop order, and yield two new fixed points in addition to the equilibrium ones. The first one corresponds to Θ=TS/TM=\Theta = T_S / T_M = \infty and leads to model A critical behavior for the order parameter and to anomalous noise correlations for the generalized angular momenta; the second one is at Θ=0\Theta = 0 and is characterized by mean-field behavior of the conserved quantities, by a dynamic exponent z=d/2z = d / 2 equal to that of the equilibrium SSS model, and by modified static critical exponents. However, both these new fixed points are unstable, and upon approaching the critical point detailed balance is restored, and the equilibrium static and dynamic critical properties are recovered.Comment: 18 pages, RevTeX, 1 figure included as eps-file; submitted to Phys. Rev.

    Random Walks in Logarithmic and Power-Law Potentials, Nonuniversal Persistence, and Vortex Dynamics in the Two-Dimensional XY Model

    Full text link
    The Langevin equation for a particle (`random walker') moving in d-dimensional space under an attractive central force, and driven by a Gaussian white noise, is considered for the case of a power-law force, F(r) = - Ar^{-sigma}. The `persistence probability', P_0(t), that the particle has not visited the origin up to time t, is calculated. For sigma > 1, the force is asymptotically irrelevant (with respect to the noise), and the asymptotics of P_0(t) are those of a free random walker. For sigma < 1, the noise is (dangerously) irrelevant and the asymptotics of P_0(t) can be extracted from a weak noise limit within a path-integral formalism. For the case sigma=1, corresponding to a logarithmic potential, the noise is exactly marginal. In this case, P_0(t) decays as a power-law, P_0(t) \sim t^{-theta}, with an exponent theta that depends continuously on the ratio of the strength of the potential to the strength of the noise. This case, with d=2, is relevant to the annihilation dynamics of a vortex-antivortex pair in the two-dimensional XY model. Although the noise is multiplicative in the latter case, the relevant Langevin equation can be transformed to the standard form discussed in the first part of the paper. The mean annihilation time for a pair initially separated by r is given by t(r) \sim r^2 ln(r/a) where a is a microscopic cut-off (the vortex core size). Implications for the nonequilibrium critical dynamics of the system are discussed and compared to numerical simulation results.Comment: 10 pages, 1 figur

    Comparison of Different Parallel Implementations of the 2+1-Dimensional KPZ Model and the 3-Dimensional KMC Model

    Full text link
    We show that efficient simulations of the Kardar-Parisi-Zhang interface growth in 2 + 1 dimensions and of the 3-dimensional Kinetic Monte Carlo of thermally activated diffusion can be realized both on GPUs and modern CPUs. In this article we present results of different implementations on GPUs using CUDA and OpenCL and also on CPUs using OpenCL and MPI. We investigate the runtime and scaling behavior on different architectures to find optimal solutions for solving current simulation problems in the field of statistical physics and materials science.Comment: 14 pages, 8 figures, to be published in a forthcoming EPJST special issue on "Computer simulations on GPU

    Reaction Diffusion Models in One Dimension with Disorder

    Full text link
    We study a large class of 1D reaction diffusion models with quenched disorder using a real space renormalization group method (RSRG) which yields exact results at large time. Particles (e.g. of several species) undergo diffusion with random local bias (Sinai model) and react upon meeting. We obtain the large time decay of the density of each specie, their associated universal amplitudes, and the spatial distribution of particles. We also derive the spectrum of exponents which characterize the convergence towards the asymptotic states. For reactions with several asymptotic states, we analyze the dynamical phase diagram and obtain the critical exponents at the transitions. We also study persistence properties for single particles and for patterns. We compute the decay exponents for the probability of no crossing of a given point by, respectively, the single particle trajectories (θ\theta) or the thermally averaged packets (θˉ\bar{\theta}). The generalized persistence exponents associated to n crossings are also obtained. Specifying to the process A+AA+A \to \emptyset or A with probabilities (r,1r)(r,1-r), we compute exactly the exponents δ(r)\delta(r) and ψ(r)\psi(r) characterizing the survival up to time t of a domain without any merging or with mergings respectively, and δA(r)\delta_A(r) and ψA(r)\psi_A(r) characterizing the survival up to time t of a particle A without any coalescence or with coalescences respectively. θˉ,ψ,δ\bar{\theta}, \psi, \delta obey hypergeometric equations and are numerically surprisingly close to pure system exponents (though associated to a completely different diffusion length). Additional disorder in the reaction rates, as well as some open questions, are also discussed.Comment: 54 pages, Late

    Renormalization group and nonequilibrium action in stochastic field theory

    Full text link
    We investigate the renormalization group approach to nonequilibrium field theory. We show that it is possible to derive nontrivial renormalization group flow from iterative coarse graining of a closed-time-path action. This renormalization group is different from the usual in quantum field theory textbooks, in that it describes nontrivial noise and dissipation. We work out a specific example where the variation of the closed-time-path action leads to the so-called Kardar-Parisi-Zhang equation, and show that the renormalization group obtained by coarse graining this action, agrees with the dynamical renormalization group derived by directly coarse graining the equations of motion.Comment: 33 pages, 3 figures included in the text. Revised; one reference adde
    corecore