205 research outputs found

    Correlation of shock initiated and thermally initiated chemical reactions in a 1:1 atomic ratio nickel-silicon mixture

    Get PDF
    Shock initiated chemical reaction experiments have been performed on a 1:1 atomic ratio mixture of 20- to 45-µm nickel and –325 mesh crystalline silicon powders. It has been observed that no detectable or only minor surface reactions occur between the constituents until a thermal energy threshold is reached, above which the reaction goes to completion. The experiments show the energy difference between virtually no and full reaction is on the order of 5 percent. Differential scanning calorimetery (DSC) of statically pressed powders shows an exothermic reaction beginning at a temperature which decreases with decreasing porosity. Powder, shock compressed to just below the threshold energy, starts to react in the DSC at 621 °C while powder statically pressed to 23% porosity starts to react at about 30 °C higher. Tap density powder starts to react at 891 °C. The DSC reaction initiation temperature of the shock compressed but unreacted powder corresponds to a thermal energy in the powder of 382 J/g which agrees well with the thermal energy produced by a shock wave with the threshold energy (between 384 and 396 J/g). (Thermal energies referenced to 20 °C.) A sharp energy threshold and a direct correlation with DSC results indicates that the mean thermal energy determines whether or not the reaction will propagate in the elemental Ni+Si powder mixture rather than local, particle level conditions. From this it may be concluded that the reaction occurs on a time scale greater than the time constant for thermal diffusion into the particle interiors

    A Hugoniot theory for solid and powder mixtures

    Get PDF
    A model is presented from which one can calculate the Hugoniot of solid and porous two‐component mixtures up to moderate pressures using only static thermodynamic properties of the components. The model does not presuppose either the relative magnitude of the thermal and elastic energies or temperature equilibrium between the two components. It is shown that for a mixture, the conservation equations define a Hugoniot surface and that the ratio of the thermal energy of the components determines where the shocked state of the mixture lies on this surface. This ratio, which may strongly affect shock‐initiated chemical reactions and the properties of consolidated powder mixtures, is found to have only a minor effect on the Hugoniot of a mixture. It is also found that the Hugoniot of solids and solid mixtures is sensitive to the pressure derivative of the isentropic bulk modulus at constant entropy

    Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) data products user's guide

    Get PDF
    Two tape products from the Total Ozone Mapping Spectrometer (TOMS) aboard the Nimbus-7 have been archived at the National Space Science Data Center. The instrument measures backscattered Earth radiance and incoming solar irradiance; their ratio -- the albedo -- is used in ozone retrievals. In-flight measurements are used to monitor changes in the instrument sensitivity. The algorithm to retrieve total column ozone compares the observed ratios of albedos at pairs of wavelengths with pair ratios calculated for different ozone values, solar zenith angles, and optical paths. The initial error in the absolute scale for TOMS total ozone is 3 percent, the one standard-deviation random error is 2 percent, and the drift is +/- 1.5 percent over 14.5 years. The High Density TOMS (HDTOMS) tape contains the measured albedos, the derived total ozone amount, reflectivity, and cloud-height information for each scan position. It also contains an index of SO2 contamination for each position. The Gridded TOMS (GRIDTOMS) tape contains daily total ozone and reflectivity in roughly equal area grids (110 km in latitude by about 100-150 km in longitude). Detailed descriptions of the tape structure and record formats are provided

    Sensitivity of fluvial sediment source apportionment to mixing model assumptions: A Bayesian model comparison

    Get PDF
    Mixing models have become increasingly common tools for apportioning fluvial sediment load to various sediment sources across catchments using a wide variety of Bayesian and frequentist modeling approaches. In this study, we demonstrate how different model setups can impact upon resulting source apportionment estimates in a Bayesian framework via a one-factor-at-a-time (OFAT) sensitivity analysis. We formulate 13 versions of a mixing model, each with different error assumptions and model structural choices, and apply them to sediment geochemistry data from the River Blackwater, Norfolk, UK, to apportion suspended particulate matter (SPM) contributions from three sources (arable topsoils, road verges, and subsurface material) under base flow conditions between August 2012 and August 2013. Whilst all 13 models estimate subsurface sources to be the largest contributor of SPM (median ∼76%), comparison of apportionment estimates reveal varying degrees of sensitivity to changing priors, inclusion of covariance terms, incorporation of time-variant distributions, and methods of proportion characterization. We also demonstrate differences in apportionment results between a full and an empirical Bayesian setup, and between a Bayesian and a frequentist optimization approach. This OFAT sensitivity analysis reveals that mixing model structural choices and error assumptions can significantly impact upon sediment source apportionment results, with estimated median contributions in this study varying by up to 21% between model versions. Users of mixing models are therefore strongly advised to carefully consider and justify their choice of model structure prior to conducting sediment source apportionment investigations

    Chaoborus and Gasterosteus Anti-Predator Responses in Daphnia pulex Are Mediated by Independent Cholinergic and Gabaergic Neuronal Signals

    Get PDF
    Many prey species evolved inducible defense strategies that protect effectively against predation threats. Especially the crustacean Daphnia emerged as a model system for studying the ecology and evolution of inducible defenses. Daphnia pulex e.g. shows different phenotypic adaptations against vertebrate and invertebrate predators. In response to the invertebrate phantom midge larvae Chaoborus (Diptera) D. pulex develops defensive morphological defenses (neckteeth). Cues originating from predatory fish result in life history changes in which resources are allocated from somatic growth to reproduction. While there are hints that responses against Chaoborus cues are transmitted involving cholinergic neuronal pathways, nothing is known about the neurophysiology underlying the transmission of fish related cues. We investigated the neurophysiological basis underlying the activation of inducible defenses in D. pulex using induction assays with the invertebrate predator Chaoborus and the three-spined stickleback Gasterosteus aculeatus. Predator-specific cues were combined with neuro-effective substances that stimulated or inhibited the cholinergic and gabaergic nervous system. We show that cholinergic-dependent pathways are involved in the perception and transmission of Chaoborus cues, while GABA was not involved. Thus, the cholinergic nervous system independently mediates the development of morphological defenses in response to Chaoborus cues. In contrast, only the inhibitory effect of GABA significantly influence fish-induced life history changes, while the application of cholinergic stimulants had no effect in combination with fish related cues. Our results show that cholinergic stimulation mediates signal transmission of Chaoborus cues leading to morphological defenses. Fish cues, which are responsible for predator-specific life history adaptations involve gabaergic control. Our study shows that both pathways are independent and thus potentially allow for adjustment of responses to variable predation regimes

    Apportioning sources of organic matter in streambed sediments: An integrated molecular and compound-specific stable isotope approach

    Get PDF
    We present a novel application for quantitatively apportioning sources of organic matter in streambed sediments via a coupled molecular and compound-specific isotope analysis (CSIA) of long-chain leaf wax n-alkane biomarkers using a Bayesian mixing model. Leaf wax extracts of 13 plant species were collected from across two environments (aquatic and terrestrial) and four plant functional types (trees, herbaceous perennials, and C3 and C4 graminoids) from the agricultural River Wensum catchment, UK. Seven isotopic (δ13C27, δ13C29, δ13C31, δ13C27–31, δ2H27, δ2H29, and δ2H27–29) and two n-alkane ratio (average chain length (ACL), carbon preference index (CPI)) fingerprints were derived, which successfully differentiated 93% of individual plant specimens by plant functional type. The δ2H values were the strongest discriminators of plants originating from different functional groups, with trees (δ2H27–29 = − 208‰ to − 164‰) and C3 graminoids (δ2H27–29 = − 259‰ to − 221‰) providing the largest contrasts. The δ13C values provided strong discrimination between C3 (δ13C27–31 = − 37.5‰ to − 33.8‰) and C4 (δ13C27–31 = − 23.5‰ to − 23.1‰) plants, but neither δ13C nor δ2H values could uniquely differentiate aquatic and terrestrial species, emphasizing a stronger plant physiological/biochemical rather than environmental control over isotopic differences. ACL and CPI complemented isotopic discrimination, with significantly longer chain lengths recorded for trees and terrestrial plants compared with herbaceous perennials and aquatic species, respectively. Application of a comprehensive Bayesian mixing model for 18 streambed sediments collected between September 2013 and March 2014 revealed considerable temporal variability in the apportionment of organic matter sources. Median organic matter contributions ranged from 22% to 52% for trees, 29% to 50% for herbaceous perennials, 17% to 34% for C3 graminoids and 3% to 7% for C4 graminoids. The results presented here clearly demonstrate the effectiveness of an integrated molecular and stable isotope analysis for quantitatively apportioning, with uncertainty, plant-specific organic matter contributions to streambed sediments via a Bayesian mixing model approach

    Private Sector Union Density and the Wage Premium: Past, Present, and Future

    Get PDF
    The rise and decline of private sector unionization were among the more important features of the U.S. labor market during the twentieth century. Following a dramatic spurt in unionization after passage of the depression-era National Labor Relations Act (NLRA) of 1935, union density peaked in the mid-1950s, and then began a continuous decline. At the end of the century, the percentage of private wage and salary workers who were union members was less than 10 percent, not greatly different from union density prior to the NLRA
    corecore