140 research outputs found

    Laserwire at the Accelerator Test Facility 2 with Sub-Micrometre Resolution

    Get PDF
    A laserwire transverse electron beam size measurement system has been developed and operated at the Accelerator Test Facility 2 (ATF2) at KEK. Special electron beam optics were developed to create an approximately 1 x 100 {\mu}m (vertical x horizontal) electron beam at the laserwire location, which was profiled using a 150 mJ, 71 ps laser pulse with a wavelength of 532 nm. The precise characterisation of the laser propagation allows the non-Gaussian transverse profiles of the electron beam caused by the laser divergence to be deconvolved. A minimum vertical electron beam size of 1.07 ±{\pm} 0.06 (stat.) ±{\pm} 0.05 (sys.) {\mu}m was measured. A vertically focussing quadrupole just before the laserwire was varied whilst making laserwire measurements and the projected vertical emittance was measured to be 82.56 ±{\pm} 3.04 pm rad.Comment: 17 pages, 26 figures, submitted to Phys. Rev. ST Accel. Beam

    Optical diffraction radiation for position monitoring of charged particle beams

    Get PDF
    In the framework of the future linear collider collaboration (CLIC, ILC), non-intercepting beam monitoring instruments are under development for very low emittance and high charge density beams. Optical diffraction radiation (ODR) was studied and developed during the last years focussing on beam size measurements. We propose in the paper to consider the use of diffraction radiation for ultra relativistic beams as position monitors with applications for the centering of scrapers, collimators and targets with high resolution. We present the experimental results obtained using small aperture slits on the ATF2 extraction beam line at KEK and on the Cornell Electron Storage Ring with 1.2 GeV and 2.1 GeV electrons respectively

    Coherent Cherenkov radiation as an intense THz source

    Get PDF
    Diffraction and Cherenkov radiation of relativistic electrons from a dielectric target has been proposed as mechanism for production of intense terahertz (THz) radiation. The use of an extremely short high-energy electron beam of a 4th generation light source (X-ray free electron laser) appears to be very promising. A moderate power from the electron beam can be extracted and converted into THz radiation with nearly zero absorption losses. The initial experiment on THz observation will be performed at CLARA/VELA FEL test facility in the UK to demonstrate the principle to a wider community and to develop the radiator prototype. In this paper, we present our theoretical predictions (based on the approach of polarization currents), which provides the basis for interpreting the future experimental measurements. We will also present our hardware design and discuss a plan of the future experiment

    DEVELOPMENT OF A E-LEARNING TRAINER WITH FEEDBACK BASED ON MOODLE'S PLUGIN STACK

    Full text link
    This thesis describes the current status of online learning systems in the world, why they are needed and what are their drawbacks. Then it's described, why you can create the best systems by using STACK, and a little about such a simulator, which is created by us

    Eupraxia, a step toward a plasma-wakefield based accelerator with high beam quality

    Get PDF
    The EuPRAXIA project aims at designing the world's first accelerator based on advanced plasma-wakefield techniques to deliver 5 GeV electron beams that simultaneously have high charge, low emittance and low energy spread, which are required for applications by future user communities. Meeting this challenging objective will only be possible through dedicated effort. Many injection/acceleration schemes and techniques have been explored by means of thorough simulations in more than ten European research institutes. This enables selection of the most appropriate methods for solving each particular problem. The specific challenge of generating, extracting and transporting high charge beams, while maintaining the high quality needed for user applications, are being tackled using innovative approaches. This article highlights preliminary results obtained by the EuPRAXIA collaboration, which also exhibit the required laser and plasma parameters

    Demonstration of a laserwire emittance scanner for hydrogen ion beams at CERN

    Get PDF
    A non-invasive, compact laserwire system has been developed to measure the transverse emittance of an H- beam and has been demonstrated at the new LINAC4 injector for the LHC at CERN. Light from a low power, pulsed laser source is conveyed via fibre to collide with the H- beam, a fraction of which is neutralized and then intercepted by a downstream diamond detector. Scanning the focused laser across the H- beam and measuring the distribution of the photo-neutralized particles enables the transverse emittance to be reconstructed. The vertical phase-space distribution of a 3 MeV beam during LINAC4 commissioning has been measured by the laserwire and verified with a conventional slit and grid method.Comment: 10 pages, 13 figures, to be published in Physical Review Special Topics - Accelerators and Beam

    Nucleation of superconductivity and vortex matter in superconductor - ferromagnet hybrids

    Full text link
    The theoretical and experimental results concerning the thermodynamical and low-frequency transport properties of hybrid structures, consisting of spatially-separated conventional low-temperature superconductor (S) and ferromagnet (F), is reviewed. Since the superconducting and ferromagnetic parts are assumed to be electrically insulated, no proximity effect is present and thus the interaction between both subsystems is through their respective magnetic stray fields. Depending on the temperature range and the value of the external field H_{ext}, different behavior of such S/F hybrids is anticipated. Rather close to the superconducting phase transition line, when the superconducting state is only weakly developed, the magnetization of the ferromagnet is solely determined by the magnetic history of the system and it is not influenced by the field generated by the supercurrents. In contrast to that, the nonuniform magnetic field pattern, induced by the ferromagnet, strongly affect the nucleation of superconductivity leading to an exotic dependence of the critical temperature T_{c} on H_{ext}. Deeper in the superconducting state the effect of the screening currents cannot be neglected anymore. In this region of the phase diagram various aspects of the interaction between vortices and magnetic inhomogeneities are discussed. In the last section we briefly summarize the physics of S/F hybrids when the magnetization of the ferromagnet is no longer fixed but can change under the influence of the superconducting currents. As a consequence, the superconductor and ferromagnet become truly coupled and the equilibrium configuration of this "soft" S/F hybrids requires rearrangements of both, superconducting and ferromagnetic characteristics, as compared with "hard" S/F structures.Comment: Topical review, submitted to Supercond. Sci. Tech., 67 pages, 33 figures, 439 reference
    corecore