INSTITUTE FOR THEORETICAL AND EXPERIMENTAL PHYSICS, MOSCOW
 Report ITEF 816
 Dexmat ective CEENT PRUAE COMMUNICATION
 CERN LIBRARIES, GENEVA

 CM-P00100632

INVESTIGATION OF THE A_{2} AND A_{3} MESON PRODUCTION
IN $\pi-$ INTERACTIONS AT A MOMENTUM OF $4.45 \mathrm{GeV} / \mathrm{C}$
G.V. Beketov, S.M. Zombkovskij, B.S. Konovalov, S.P. Kruchinin, Ya.M. Selektor and V.N. Shulyachenko

Moscow 1970

```
Translated from the Gcrman (DESY 13-0̈D-132) at CERN by G. Grayer
    (Original : Russian)
        Not revised by the Translation Service
```

(CERN Trans. Int. 71-8)

1. Intronuction

During the last year, the problem of the measurement of the quantum numbers of the A_{2} mesons was given great importance. This problem is complicated by the demonstration of the splitting of the A_{2} meson peaks ${ }^{1)}$. The largest part of this work, in which an attempt was made to determine the quantum numbers of the A_{2} meson, is based on the analysis of $A_{2} \rightarrow \rho \pi$ decays. It can be fairly certainly established that this decay represents the principle A_{2} decay. The difficulty occurs in the establisiment of the spin and parity of the A_{2} meson on top of the large background ($450-60 \%$), of which the properties have still hardly been explored. In one work ${ }^{2}$) the task was undertaken of calculating the angular characteristics of the background, in so far as it influences the density of points in the Daijtz plot. This alluws one to say that up to now the spin of the A_{2} meson is $J=2$ and the parity is sti. 11 not yet established.

In the present work, the total effective cross-section for A_{2} and A_{3} meson production in the rcactions

$$
\begin{equation*}
\pi^{-} p \rightarrow A_{2}^{-} p, \quad \Lambda_{2} \rightarrow \rho^{0} \pi^{-} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\pi^{-} p \rightarrow A_{3}^{-} p \tag{2}
\end{equation*}
$$

at a momentum of $4.45 \mathrm{GeV} / \mathrm{c}$ is determined. We find values for the slope of the effective differential cross-section ($\mathrm{d} \sigma / \mathrm{dt}$ ') for the production of a 3π systen in various mass intervals. An analysis of the density distribution of the points in the Dalitz diagram and the angular distribution perpendicular to the decay plane of the $A=$ meson was used. In this way the angular characteristics of the background and the influence of the Deck effect on the angular distribution was calculated.
2. THE EFFECTIVE MAES SPECTRUM

In rrder to analyse the reactions (1) and (2), about 300,000 photographs were examined; they were taken in a liquid hydrogen bubble chamber of 50 cm diameter with a π^{-}meson beam of $4.47 \mathrm{GeV} / \mathrm{c}$ from the ITEF protou
synchroton. Events of the reaction

$$
\begin{equation*}
\pi^{-} p \rightarrow p \pi^{+} \pi^{-} \pi^{-} \tag{3}
\end{equation*}
$$

were selected, for which $P\left(X^{2}\right) \geq 0.5 \%$, and the visible ionization of all tracks agreed with that expected for this reaction. A cotal of 2472 events of reaction (3) were obtained. The effective mass spectrum of the 3π systen is given in Fig. 1. The interval of the A_{1} meson ($950 \leq M_{3 \pi} \leq 1150 \mathrm{MeV}$) has been investigated by us ${ }^{3}$. In the total 3π system mass spectrum a maximum is clearly distinguished due to the A_{2} meson; also a peak due to the A_{3} meson $\left[T_{A}(1640)\right.$ meson $]$ stands out weakly.

In Fig. 1 the 3π system mass spectrum for the decay via reaction (3) is displayed (as a hatched histogram) following the cuts: (a) events were selected for which the effective mass of at least one of the $\pi^{+} \pi^{+}$systerus lay in the ρ-meson region ($665 \leq M_{\pi}{ }^{+} \pi^{-} \leq 865 \mathrm{M} \sim \mathrm{V}$); and (b) events with peripheral $\Delta^{++}(1236)$ isobar production were exciuded $[$ events with $1120 \leq \mathrm{M}_{\mathrm{PT}^{+}} \leq 1340 \mathrm{MeV}$ and $\left.\left|\mathrm{t}_{\Delta^{++}}\right|<0.3(\mathrm{GeV} / \mathrm{c})^{2}\right]$. As we have denonstrated elsewhere ${ }^{4}$, the axclusion of events forming a Δ^{++}(1236) isobar with $\left|t_{\Delta^{++}}\right|<0.3(\mathrm{GeV} / \mathrm{c})^{2}$ is practically the same as excluding the whole peripheral background reaction $\pi^{-} p \rightarrow \Delta^{++}(1236) \pi^{-} \pi^{-}$. The ratio of the useful effect to no effect in the region of the A_{2} meson anounis to $61: 1$. The maximum of the A_{2} meson corresponds to the mass $M_{A_{2}} \sim 1325 \mathrm{MeV}$, the half-width to $120-150 \mathrm{MeV}$.

In Fig. 2 is displayed a mass spectrum of the 3π spectrum with the following cuts: (a) events with the smallest effective mass of the $\pi^{+1} \pi^{-}$ system lying in the ρ meson band and the square of the four-momentum transfer of this cystem is such that $\left|t_{\pi^{\circ} \cdot \pi^{-}}\right| \leq 0.3(\mathrm{GeV} / \mathrm{c})^{2}$ were excluded; and (b) events with peripheral production of Δ^{++}(1236) isobars were removed by the method desoribed above.

In Fig. $2 b$ the effective mass spectrum of the 3π system from reaction (3) is seen, in which the effective mass of at least one of the $\pi^{+} \pi^{-}$systems lies in the f^{0} meson band.

In the distributions of Figs. $2 a$ and $2 b$ the A_{3} meson peak is clearly recognized. The distribution of Figs. $2 a$ and $2 b$ were approximated by a Breit-Wigner curve for the A_{3} meson, with the curve for invariant phase space below. The phase space curve was calculated within limits by a Monte Carlo method, making use of the experimental histogram. The results of the fit using the least squares method are drawn as a continuous line in Figs. 2 a and 2 b . For the mass and width of the A_{3} meson, we find $M=1672 \mathrm{MeV}, \Gamma=128 \mathrm{MeV}$ for the decay $A_{3} \rightarrow \pi^{+} \pi^{-} \pi^{-}$, and $M=1712 \mathrm{MeV}$, $\Gamma=128 \mathrm{MeV}$ for the $\mathrm{A}_{3} \rightarrow \mathrm{f}^{0} \pi^{-}$decay. The total production cross-section of the A_{2} and A_{3} mesons amounts to $\sigma_{A_{2}}=(60 \pm 7) \mu \mathrm{b} ; \sigma\left[A_{3} \rightarrow(3 \pi)^{-}\right]=$ $(90 \pm 8) \mu \mathrm{b}$, and $\sigma\left[A_{3}^{-} \rightarrow f^{0} \pi^{-}\right]=(63 \pm 7) \mu \mathrm{b}$ (all errors are statistical). The value found for the effective cross-section for $\sigma\left(A_{3}^{-} \rightarrow f^{0} \pi^{-}\right)$is very sensitive to the form of the curve of the background fit used; thus in our opinion the hypothesis that the decay of the A_{3} mesons takes place 100% through the $A_{3}^{-} \rightarrow f^{0} \pi^{-}$channel is not exciuded.

In Figs. 3a and $3 b$ the distributions of the number of events of reaction (3) against the magnitude of $t^{\prime}=\left|t-t_{\min }\right|$ are represented graphically, where t is the square of the four-momentum transferred to the π^{-}mesons from the 3π system, and $t_{\text {min }}$ the smallest possible value for this magnitude at the given mass value of the 3π system. The distribution of t^{\prime} was found for the following mass intervals of the 3π system: (a) $975 \leq M_{3 \pi} \leq 1275 \mathrm{MeV}$; (b) $1275<\mathrm{N}_{{ }_{5} T} \leq 1375 \mathrm{MeV}$; (c) $1375<$ $M_{3 \pi} \leq 1575 \mathrm{MeV}^{\prime}$; (d) $1575 \leq \mathrm{M}_{3 \pi} \leq 1775 \mathrm{MeV}$; and (e) $1775 \leq \mathrm{M}_{3 \pi} \leq 1075 \mathrm{McV}$. The distribution was approximated by the expoiiential $d N / d t^{\prime} \sim \exp \left(B t^{\prime}\right)$ in the interval $0<t \leq 0.8(\mathrm{GeV} / \mathrm{c})^{2}$. By use of the maximum likelihood method we obtained the following values for the slope $B: B_{a}=5.88 \pm 0.39$; $\mathrm{B}_{\mathrm{b}}=3.77 \pm 0.56 ; \mathrm{B}_{\mathrm{c}}=4.25 \pm 0.39 ; \mathrm{B}_{\mathrm{d}}=3.95 \pm 0.39$; and $\mathrm{B}_{\mathrm{e}}=3.38 \pm 0.47$ $(\mathrm{GeV} / \mathrm{c})^{-2}$.

The large value for the slope for the A_{1} meson ($975-1275 \mathrm{MeV}$) is consistent with the accepted assumption that the Deck effect supplies the main contribution to this mass region. At the large mass values a monotonic decrease of the slope with the mass of the 3π system is observed, suggesting the adoption of a contribution due to the peripheral diagram
at large mass values of the 37 systeri. The monotonic lapse of the fall-off of the slope B with the 3π system mass is disturbed for the mass region of the A_{2} meson; in this mass region a substantial decrease in the slope is established. For the A_{2} meson production by exchange of poles belonging to the vacuum group, the effective differential cross-section do/dt' mast go to zero at $t^{\prime} \rightarrow 0$. Due to the large background under the A_{2} meson poak, and also to the statistical limitations, a minimum at small t^{\prime} is not cstab1ished.
3. ANGULAR DISTRIBUTIONS AND THE DENSITY DISTRIBUTION OF THE POINTS IN THE DALITZ PLOT IN THE A_{2} MESON REGION

The usual method of determining the quantum numbers of a 3π resonance consists of the analysis of the density of points in the Dalitz plot, and the analysis of the differential angular distributions of the decay products of the resouance concerned. We carry out an analysis of the quantum number of the A_{2} mesons with the help of the projections of the Dalitz plot and by use of the angular distribution between the direction of the nornal of the decay plane of the A_{2} mesons and the direction of the primary π mesons (angle θ) in the S-system of the A_{2} mesons. The analysis was worked through for the quantum numbers $j^{p}=2^{+}$and 2^{-}. The projection of the Dalitz ploi for the A_{2} meson region on the $M_{\pi^{+} \pi^{-}}^{2}$ axis is represented in Fig. 4a. The s lection of the events correspunds to the hatched histogram of Fig. 1. The tharetical curves were calculated for the quantum numbers 2^{+}(continuous line) and 2^{-}(broken line) in accordance with Frazer et a1. ${ }^{5}$). The calculated curves were normalized to the total number of events in the histogram. The value of χ^{2} gives for the hypotheses of the quantum numbers 2^{+}and $2^{-}: \chi_{2^{+}}^{2}=28.53$, and $\chi_{2^{-}}^{2}=148.63$, for 12 degrecs of freedom.

In Fig. 5 is shown the distribution of the number of events in the A_{2} meson region egainst $\cos \theta$ (Fig. 5a) and from the control region (Fig. 5b). The control region was selected from both sides of the A_{2} meson bard, corresponding to the mass intervals $1225<\mathrm{M}_{\pi \rho}<1275 \mathrm{MeV}$ and $1375<M_{\pi \rho}<1425 \mathrm{MeV}$. The distributions for the control regions were
sumned, being compiled relative to $\cos \theta=0$, in order to increase the statistical accuracy.

The control distribution was approximated to the linear function $a+b|\cos \theta|$. For the parameters a and b, the values $a=32.9$ and $b=17$ were found. Under the assumptions that (i) the background in the A_{2} meson band possesse; the same character as in the control band, and (ii) that the number of background events is equal to the total number of events in the control region, the lines in Fig. 5b were directly drawn for the quantum numbers 2^{+}and 2^{-}(continuous line and broken line). The theoretical distribution in $\cos \theta$ has been taken from Berman et al. ${ }^{6}$) and was indeed obtained by a simplified assumption about the A_{2} meson production mechanism. For all cases the assumption is that the A_{2} was produced by exchange of a pole belonging to the vacuun group, i.e. the P, P^{\prime} or ρ poles. By this means one supposes that one can attribute the largest contribution co the density matrix element ρ_{1}, if the spin and parity of the resonance lies in the natural series ($1^{-}, 2^{+}, 3^{-}, \ldots$) or ρ_{00} when the spin and parity of the resonance is attributcd to the series $1^{+}, 2^{-}, 3^{+}, \ldots$. Taking into account the decay of the resonarce, we adopt the quantuni numbers 2^{-}, in order that the $A_{2} \rightarrow \rho^{0} \pi^{-}$decay takes place with the least angular momentum. From the above assumption the expression for: the angular distribution (after taking into account the background) assumes the following form:

$$
\begin{aligned}
& W_{2}+(\cos \theta)=N_{1}\left(1-3 \cos ^{2} \theta+4 \cos ^{4} \theta\right)+(32.9-17|\cos \theta|), \\
& W_{2}-(\cos \theta)=N_{2}\left(1-2 \cos ^{2} \theta+\cos ^{4} \theta\right)+(32.9-17|\cos \theta|),
\end{aligned}
$$

where N_{1} and N_{2} are the normalization factors. The value for χ^{2} for the hypotheses of the quantum numbers 2^{+}and 2^{-}are $\chi_{2^{+}}^{2}=12.7$ and $\chi_{2}^{2}=63.0$ for 9 degrees of treedon.

We find the centre of gravity of the A_{2} meson distribution at $\sim 1325 \mathrm{MeV}$. This value for the A_{2} meson mass differs from the mean world value by about 20 MeV . The A_{2} meson maximum depends on the experimental cuts over the fairly wide mass interval of ~ 1290 to $\sim 1340 \mathrm{MeV}$. The discrepancy can be easily explained either by a small ($\sim 1.5 \%$) systematic
shift of the incoming momentum, or by a systenatic displacenent in the magnetic field values, or through both these affects together. If one clajms that the exact discrepancy in this work is due to a systematic effect and not through the absence of a light A_{2} meson in our work and in some other experiments, then one can examine the angular distributions and the distrabution of the points in the Dalitz plot for a light and heavy A_{2} meson.

Although we have observed no "splitting" of the maximum of the A_{2} mesons, the mass distribution was divided into two parts (at the position of the centre of gravity of the peak) and for each part the analysis of the quantum numbers was carried out. For the "1ight" ($A_{2 L}$) meson and for the "heavy" ($A_{2 H}$) meson we chose the mass range $1275-1325$ and $1325-1375 \mathrm{MeV}$. In Figs. 4 b and 4 c one sees the projection of the Dalitz plots for the nass intervals of the $A_{2 L}$ and $A_{2 H}$ mesons. The value for the χ^{2} for the hypotheses $J^{P}=2^{+}$(continuous line) is equal to $X_{2^{+} L}^{2}=11.9$ for 10 degrees of frcedom, and $X_{2^{+} H}^{2}=24.4$ for 11 degrees of freedow; for the hypotheses $J^{P}=2^{-}, \chi_{2^{-} L}^{2}=23.2$ for 10 degrees of freedom, and $\chi_{2-r}^{2}=29.5$ for 11 degrees of freedom.

The angular distribution for the mass region of the $A_{2 L}$ and the $A_{2 H}$ mesons referred to $\cos \theta=0$ were added, thus increasing the statistical accuracy. The distribution for the $A_{2 L}$ meson mass region is displayed graphically in Fig. $5 c$, and that of the $A_{2 H}$ in Fig. 5d. The value of χ^{2} for the hypotheses $J^{P}=2^{+}$and 2^{--}gives $\chi_{2^{+} L}^{2}=3.6 ; \chi_{2^{+} H}^{2}=7.7$ and $\chi_{2-L}^{2}=17.7, \chi_{2^{+} H}^{2}=46.1$ for 4 degrees of freedom. Excluding the Deck effect by the above method leads to tine values $X_{2_{L}{ }_{L}}^{2}=4.7 ; X_{2^{+} H}^{2}=9.2$; $\chi_{2-L}^{2}=17.4$; and $\chi_{2}^{2}=45.3$ for 4 degrees of freedom. The corresponding distributions and the theoretical curves are displayed in Figs. 5g and 5h. The continuous lira represents the hypothesis $J^{P}=2^{+}$, the broken Iine the hypothesis $J^{P}=2^{-}$.

Thus the analysis of spins and parity of the A_{2} meson gives the quantum numbers $J^{P}=2^{+}$, for the $A_{2 L}$ and $A_{2 H}$ mesons as well as for the "single" A_{2} meson, in agreement with a series of other works ${ }^{7}$).

To conclude we thank V.U. Vladimiroky, G.K. Kliger and A.B. Kaidalov for numerous useful comments.

REFERENCES

1) H. Bens, G.E. Chicovani et al., Phys. Letters 28 B, 233 (1968).
2) J. Ballam, A.D. Brody, G.B. Chadwick et al., Phys. Rev. Letters 21, 934 (1968).
N.M. Cason, Phys. Rev. 148, 1283 (1966).
3) G.V. Beketov, S.M. Zonbovskij et al., Preprint ITEF-775 (1970).
4) G.V. Beketov, S.M. Zonbovskij et al., Preprint ITEF-767 (1970).
5) W.R. Frazer, J.R. Fulco and F.R. Harpern, Phys. Rev. 136 B, 1207 (1964).
6) S.M. Berman and M. Jacob, Phys. Rev. 139 B, 1023 (1965).
7) R. Baud, H. Benz et a1., Phys. Ietters 31 B, 397 (1970).
H. Aguilar-Benitez, J. Barlow, L.D. Jacobs et al., Phys. Letters 29 B, 62 (1969).

Figure captions

Fig. 1 : Effective mass distribution of the 3π systen from reaction (i). The hatched distributions are the events for which the lowest effective mass of the $\pi^{+} \pi^{--}$systens lies in the ρ meson band [events with the production of $\Delta^{+\dagger}$ (1236) isobars with $\left|t_{\Delta^{++}}\right|<0.3 \mathrm{GeV} / \mathrm{c}$ were excluded].

Fig. 2 : The distribution of the effective mass of the 3π systen from reaction (1).
a) Events for which at least one $\pi^{+} \pi^{-}$system lies in the mass interval of the ρ meson and $\left|t_{\pi^{+}} \pi^{-}\right|<0.3(\mathrm{GeV} / \mathrm{c})^{2}$; thus events with production of $\Delta^{++}(1236)$ isobars with $\left|t_{\Delta^{++}}\right|<0.3(\mathrm{GeV} / \mathrm{c})^{2}$ are exclinded.
b) Events for which the effective wass of at least one $\pi^{+} \pi^{-}$ system lies in the f^{0} meson mass region.

Fig. 3 : Distribution of the number of events of reaction (1) against $t^{\prime}=\left|t-t_{\min }\right|$ for different mass intervals of the 3π system:
a) $975 \leq M_{3 \pi} \leq 1275 \mathrm{MeV}$
b) $1275<M_{3 \pi} \leq 13 / 5 \mathrm{MeV}$
c) $1375<\mathrm{M}_{3 \pi} \leq 1.575 \mathrm{MeV}$
d) $1.575<M_{3 \pi} \leq 1775 \mathrm{MeV}$
e) $1775<\mathrm{M}_{3 \pi} \leq 1975 \mathrm{MeV}$.

Fig. 4 : Distribution of the number of events from the A_{2} meson band ($1275<\mathrm{M}_{3 \pi}<1375 \mathrm{MeV}$) against $\mathrm{M}_{\pi^{+} \pi^{-}}$. The selection of events corresponds to the hatched histogram of Fig. 1. The theoretical curves refer to the hypothesis $J^{P}=2^{+}$(continuous Iine) and $\mathrm{J}^{\mathrm{P}}=2^{-}$(broken 1ine).

Fig. 5 : Distribution of the number of events against $\cos \theta$:
a) for the control region ($1225<\mathrm{M}_{\rho \pi}<1275 \mathrm{MeV}$ and $1375<\mathrm{M}_{\rho \pi}<1425 \mathrm{MeV}$);
b) for the A_{2} meson region ($1275<\mathrm{M}_{\rho \pi}<1375 \mathrm{MeV}$);
c) for the $A_{2 L}$ meson region ($1275<M_{\rho T}<1325 \mathrm{MeV}$);
d) for the $A_{2 H}$ meson region ($1325<M_{\rho \pi}<1375 \mathrm{MeV}$);
e, f) for the control region and the A_{2} meson region, excluding the events with $\left|t_{\rho}\right|<0.5(\mathrm{GeV} / \mathrm{c})^{2} ;$
g, h for the $A_{2 L}$ and A_{211} meson regions; events with $\left|t_{\rho}\right|<0.5(\mathrm{GeV} / \mathrm{c})^{2}$ were excluded; the theoretical. curves correspond to the hypotheses $\mathrm{J}^{\mathrm{P}}=2^{+}$(continuous line) and $J^{P}=2^{-}$(broken line).

Fig. 1

Fig. 2

Fig. 4

Fig. 5

