64 research outputs found

    Nonlinear Aerodynamics and the Design of Wing Tips

    Get PDF
    The analysis and design of wing tips for fixed wing and rotary wing aircraft still remains part art, part science. Although the design of airfoil sections and basic planform geometry is well developed, the tip regions require more detailed consideration. This is important because of the strong impact of wing tip flow on wing drag; although the tip region constitutes a small portion of the wing, its effect on the drag can be significant. The induced drag of a wing is, for a given lift and speed, inversely proportional to the square of the wing span. Concepts are proposed as a means of reducing drag. Modern computational methods provide a tool for studying these issues in greater detail. The purpose of the current research program is to improve the understanding of the fundamental issues involved in the design of wing tips and to develop the range of computational and experimental tools needed for further study of these ideas

    Nonlinear aerodynamics and the design of wing tips

    Get PDF
    This report describes results of research conducted from April 1991 through March 1992. The general objective was to improve an existing wing optimization method, and apply the method to specific problems of interest. The method, while a valuable tool for wing tip design studies, can be applied to more general problems, and has been applied to some of these other problems during its development. Specific goals that were accomplished are listed and explained in more detail in the report. First, improvements were made to the portability and control flow of the existing code. The major iteration loop dealing with structural design was sped up and an alternate approach, using the optimizer to do structural sizing, was studied. Second, analysis methods were improved in the areas of structural and high lift modeling. The structural method was revised to give total wing weight and verified against data for particular commercial aircraft. The high lift analysis was improved to provide reasonable estimates of C(sub L max) in the flaps down condition. These improvements enabled making wing area a design variable, where it had been a fixed variable in the original method. Third, the method was applied to the design of wings for a Learjet. Rough studies were done to determine the effects of laminar flow design on wing shape. Finally, studies on wingtip shape were begun

    The computation of induced drag with nonplanar and deformed wakes

    Get PDF
    The classical calculation of inviscid drag, based on far field flow properties, is reexamined with particular attention to the nonlinear effects of wake roll-up. Based on a detailed look at nonlinear, inviscid flow theory, it is concluded that many of the classical, linear results are more general than might have been expected. Departures from the linear theory are identified and design implications are discussed. Results include the following: Wake deformation has little effect on the induced drag of a single element wing, but introduces first order corrections to the induced drag of a multi-element lifting system. Far field Trefftz-plane analysis may be used to estimate the induced drag of lifting systems, even when wake roll-up is considered, but numerical difficulties arise. The implications of several other approximations made in lifting line theory are evaluated by comparison with more refined analyses

    Aircraft design optimization with multidisciplinary performance criteria

    Get PDF
    The method described here for aircraft design optimization with dynamic response considerations provides an inexpensive means of integrating dynamics into aircraft preliminary design. By defining a dynamic performance index that can be added to a conventional objective function, a designer can investigate the trade-off between performance and handling (as measured by the vehicle's unforced response). The procedure is formulated to permit the use of control system gains as design variables, but does not require full-state feedback. The examples discussed here show how such an approach can lead to significant improvements in the design as compared with the more common sequential design of system and control law

    Single-Winged Autorotating Brake for Sensor Deployment on Mars

    Get PDF
    The following pages describe the development of a nonlinear simulation, results for the Martian entry problem, and a sizing study to determine whether the approach is feasible. The nonlinear simulation is described here and results are presented for several cases using Martian and Terrestrial atmosphere models. The results show that a 2.5 kg payload could be successfully delivered to the Martian surface using this approach and the report suggests an earth-based test of the system. Prior to the specific analysis presented here, a theoretical study of the mechanics of autorotation was completed, and a summary of this work is also included as part of this final report

    Simplified Aerodynamic and Structural Modeling for Oblique All-Wing Aircraft. Phase 2: Structures

    Get PDF
    Any aircraft preliminary design study requires a structural model of the proposed configuration. The model must be capable of estimating the structural weight of a given configuration, and of predicting the deflections which will result from foreseen flight and ground loads. The present work develops such a model for the proposed Oblique All Wing airplane. The model is based on preliminary structural work done by Jack Williams and Peter Rudolph at Mdng, and is encoded in a FORTRAN program. As a stand-alone application, the program can calculate the weight CG location, and several types of structural deflections; used in conjunction with an aerodynamics model, the program can be used for mission analysis or sizing studies

    Highly nonplanar lifting systems

    Get PDF
    This paper deals with nonplanar wing concepts -- their advantages and possible applications in a variety of aircraft designs. A brief review and assessment of several concepts from winglets to ring wings is followed by a more detailed look at two recent ideas: exploiting nonplanar wakes to reduce induced drag, and applying a 'C-wing' design to large commercial transports. Results suggest that potential efficiency gains may be significant, while several nonaerodynamic characteristics are particularly interesting

    Miniature Trailing Edge Effector for Aerodynamic Control

    Get PDF
    Improved miniature trailing edge effectors for aerodynamic control are provided. Three types of devices having aerodynamic housings integrated to the trailing edge of an aerodynamic shape are presented, which vary in details of how the control surface can move. A bucket type device has a control surface which is the back part of a C-shaped member having two arms connected by the back section. The C-shaped section is attached to a housing at the ends of the arms, and is rotatable about an axis parallel to the wing trailing edge to provide up, down and neutral states. A flip-up type device has a control surface which rotates about an axis parallel to the wing trailing edge to provide up, down, neutral and brake states. A rotating type device has a control surface which rotates about an axis parallel to the chord line to provide up, down and neutral states

    Transonic wind tunnel test of a 14 percent thick oblique wing

    Get PDF
    An experimental investigation was conducted at the ARC 11- by 11-Foot Transonic Wind Tunnel as part of the Oblique Wing Research Aircraft Program to study the aerodynamic performance and stability characteristics of a 0.087-scale model of an F-8 airplane fitted with an oblique wing designed by Rockwell International. The 10.3 aspect ratio, straight-tapered wing of 0.14 thickness/chord ratio was tested at two different mounting heights above the fuselage. Additional tests were conducted to assess low-speed behavior with and without flaps, aileron effectiveness at representative flight conditions, and transonic drag divergence with 0 degree wing sweep. Longitudinal stability data were obtained at sweep angles of 0, 30, 45, 60, and 65 degrees, at Mach numbers ranging from 0.25 to 1.40. Test Reynolds numbers varied from 3.2 to 6.6 x 10 exp 6/ft. and angle of attack ranged from -5 to +18 degrees. Most data were taken at zero sideslip, but a few runs were at sideslip angles of +/- 5 degrees. The raised wing position proved detrimental overall, although side force and yawing moment were reduced at some conditions. Maximum lift coefficient with the flaps deflected was found to fall short of the value predicted in the preliminary design document. The performance and trim characteristics of the present wing are generally inferior to those obtained for a previously tested wing designed at ARC
    corecore