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Abstract

The classical calculation of inviscid drag, based on far-

field flow properties, is re-examined with particular atten-

tion to the nonlinear effects of wake roll-up. Based on a

detailed look at nonlinear, inviscid flow theory, the paper

concludes that many of the classical, linear results are more

general than might have been expected. Departures from

the linear theory are identified and design implications are

discussed. Results include the following: Wake deforma-

tion has little effect on the induced drag of a single element

wing, but introduces first order corrections to the induced

drag of a multi-element lifting system. Far-field Trefftz-

plane analysis may be used to estimate the induced drag

of lifting systems, even when wake roll-up is considered,

but numerical difficulties arise. The implications of sev-

eral other approximations made in lifting line theory are

evaluated by comparison with more refined analyses.

Subscripts

i induced component

n normal component

w wake

Introduction

The classical analysis of induced (vortex) drag in-

volves several simplifying assumptions, which although not

strictly valid, lead to very simple and useful results. Nu-

merous experiments have demonstrated that classical the-

ory is sufficiently accurate to be used in many design appli-

cations, but quantitative estimates of the error introduced

by some of the theory's approximations have not been es-

tablished. Recent studies have suggested that these ap-

proximations may account for errors in induced drag cal-

culations of five to ten percent. 1 Although a calculation of

this small force to within five percent might be considered

quite acceptable for some applications, such errors would

have significant implications for wing design.

Nomenclature

b wing span

Ct section lift coefficient

D drag

/_ inviscid force

l section lift

S area

h unit normal vector

u, v, w perturbation velocity components

U, V, W velocity components

U_o freestream velocity

17 local flow velocity

y spanwise coordinate

e wake deflection angle

¢ velocity potential

r circulation, vortex strength

p fluid density

Recently, much attention has been focussed on the sig-

nificance of wake shape on the computation of induced

drag. 1-4 It has been suggested that the nonplanar geom-

etry of the vortex wake caused by self-induced roll-up or

produced as a result of wing planform shape leads to a

significant reduction in induced drag. s,6

In this paper, the classical calculation of inviscid drag,

based on far-field flow properties, is re-examined with par-

ticular attention to the nonlinear effects of wake shape.

A Generalized Look at Classical Theory

The classical expression for the induced drag of a pla-

nar wing was derived by Prandtl, based on his lifting line

theoryT:

Di = _pan-_-'_l(y)dy
(1)
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However,the lifting line assumptionis morerestrictive
thannecessaryfor this derivation.Munks modeled lift-

ing surfaces with sweep and systems of nonplanar elements

with horseshoe vortices and showed that the drag could be

written in terms of the far-field induced velocities:

P f_ ry. dt (2)

where V,_ is the normal component of the induced velocity

at the wake far downstream of the wing and F is the circu-

lation on the wing at the corresponding spanwise position.

Reference 9, among others, shows how a similar result

could be obtained without reliance on the simple vortex

model. The drag may be related to the pressure and mo-

mentum flux over a control volume as shown in figure 1.

In incompressible flow the force is given by:

so the drag is:

ff ffP

o, =  11o,+ - w')as-. ]],,.,,,  )as (4)

Equation 4 is based solely on the momentum equation for

steady ideal fluid flow.
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Figure 1. Control Volume for Computation of Forces.

This expression for drag may be written in terms of

the perturbation velocities, u, v, and w:

P /L v2 + w2 - u2 - 2uU_Di = _ ,S

-P/£,b Uw- PfS,l Uv
(5)

where the notation a, f denotes that the integral over the

forward face is subtracted from the value over the aft face.

Mass conservation requires that:

,ii..-.li,=-.li .:° +,
,S ,b ,1

leaving only the following terms:

P [ f v 2 + w 2 _ u 2
Oi -= 2 J Ja,l

--P/_,b UW -- P f I, 1 UV
(7)

As the control volume size is increased, the high order

terms associated with the top, bottom, front, and sides of

the box become small and one is left with:

i[ U 2 W 2 B 2

Di = 2JJa + --
(8)

In the case of potential flow, the integral may be writ-

ten as:

P SL ( 04 2 042 042 _ 2u2) dSO i = _ ' Ox + _y + -_z

PH (v4. v4 - 2u_) aS=7 J .]a
(9)

Substituting the vector relation:

v4. v4 = v. (4v4) - ¢v=4

and noting that outside the wake, V24 = 0, the drag equa-

tion becomes:

Di = _ V. (¢V4)- 2u 2 dS (10)

Separating the divergence into terms in the cross flow and

the x-derivatives leaves:

fL p ff o .¢0¢)P V_,. (4Vy=4) dS + -_ -_x { -_x - 2u= dSDi =

(l*)



Gauss' theorem allows us to express the area integral

in terms of a contour integral surrounding the wake dis-

continuities. In general:

SO,

fs V • FdS = _ F. fidl

P_ P/_dOU-u2dSDi -- -_ (¢V¢). fi dl + -_ Ox (12)

since the component of V¢ in the normal direction is just

°-2-¢the closed contour integral around the wake becomes
On '

a line integral on the wake:

P
Di -2 _,_k_ Orb p Ou= (Aeon) dl + -_/f_ ¢'_x - u2 dS (13)

The jump in potential at a given point in the wake

is just the integral of V • ds from a point above the wake

to a point below. Since the normal velocity is continuous

across the wake, the integral is equal to the circulation

on the wing at the point where this part of the wake left

the trailing edge. Also, the normal derivative of ¢ is just

the normal velocity. So, we recover equation 2 with the

correction due to the deformed wake:

pff 0u uP r V,_ dl + _ ¢ - dSDi = -_ a_e Ox
(14)

When the wake is assumed to trail from the wing trail-

ing edge in the direction of the freestream, no u pertur-

bations due to the wake are produced and so, far down-

stream of the wing, the correction terms vanish. If one

further assumes that the section lift is linearly related to

the freestream velocity and the circulation F, equation 14

may be reduced to equation 1.

The vanishing of the correction term in equation 14

does not require that the wing be modeled as a lifting line,

nor that the wake be planar, only that the wake trails

from the lifting surface in straight lines parallel to the

freestream. Sears 3 has suggested that when the wake is

flat, but is displaced from the freestream direction, only

small differences from the classical results are to be ex-

pected. However, even slow deformations of the wake can

lead to large differences in induced drag as calculated from

the Trefftz-plane integration. A simple demonstration of

this is shown in figure 2. This hypothetical wake shape,

which folds over on itself, leads to no perturbation veloc-

ities in the Trefftz plane as the vorticity on the left and

right sides of the wing are forced to cancel. This is en-

tirely non-physical - but so is the straight wake generally

used in Trefftz-plane calculations. It is therefore not ap-

parent that the usual induced drag analysis can be used

to accurately compute induced drag, since the actual wake

shape far downstream of the lifting surface is significantly

deformed under the influence of its own velocity field.

Figure 2. Hypothetical Wake Shape with Incorrect

Far-Field Drag

This simple example illustrates that one must be very

careful in applying Trefftz-plane analysis for induced drag

prediction. In fact, even the general equation 4 will pro-

duce an incorrect result when applied in this case. The

conditions under which it is acceptable to apply far-field

analysis are easily determined by considering the two con-

trol volumes shown in figure 3. The force predicted from

consideration of near-field velocities is:

F = JNF("')dS = /FF('")dS- £ake('")dS

The far field analysis gives the correct result only when

(...)as = o
ake

that is, when the wake is force-free. This means that

correct results will be obtained when the wake shape is

properly computed, including the deformation associated

with induced velocities. If we are concerned only with the

computation of drag, however, the conditions are some-

what less restrictive. The correct drag is obtained by far

field analysis when the wake is drag-free. In the sim-

ple example of figure 2, the wake was not drag-free and

this accounted for the clearly incorrect result. Although

the correct force-free wake is drag free, it is not the only

drag-free shape. A wake that trails downstream from the

wing in the freestream direction must also be drag-free (as

any forces are perpendicular to the direction of the vortic-

ity). We are left with the very useful result that two wake



shapesmaybeusedfor calculationof thedragusingfar-
fieldmethods:thecorrect,rolled-upshapeandthestraight
wakethat isassumedfortheclassicaltheory.It shouldbe
notedthatwakesarecommonlyplacedinabody-fixed(not
freestream-fixed)directionin manypanelprograms.Such
practiceleadsto incorrectcalculationsbasedon far-field
velocities,especiallywhenthewakeisnonplanar.

Far Field (IF)

Wake

Figure 3. Control Volumes for Far-Field Drag Calcu-

lation

It is interesting to note that while the streamwise wake

is acceptable for drag calculations, it is not, in general,

valid for computation of lift in the far field. When lateral

velocities (due to nonplanar geometries) act on a stream-

wise wake, lift forces are generated. This is why nonlinear

lift effects are not seen as an increase in wake vorticity

strength. Proper computation of these effects, including

vortex lift, in the far field require consideration of wake

deformation.

Influence of Wake Roll-Up on Drag

Although far-field computations are permissible when

the wake is properly rolled-up or when the wake is in the

direction of the freestream, the two results would not be

expected to produce exactly the same result. One may

argue, as Prandtl does in reference 7, that if the wake de-

forms slowly then the velocities produced by the deformed

wake in the near-field should not be very different from

the velocities produced by the straight wake in the near

field. So a reasonable approximation may be obtained by

assuming a straight wake and using the far-field integral

on the simple wake shape. This is, in most practical cases,

the best solution, but here we consider the approximation

in more detail.

i

When the wake is assumed to be planar, but deflected

by an angle, e, from the freestream, the w 2 term in equa-

tion 8 is reduced by cos 2 e and the u s term is approximately

w 2 sin s e, leading to a change in drag of order e2. We note

that for this planar wing, such a wake is drag-free and we

expect the far-field solution to be valid. However, the cor-

rect wake shape is quite different from the simple deflected

planar wake.

To provide a quantitative estimate of the effect of wake

roll-up on drag, several wings were analyzed using the high

order panel method, A502.1° Drag was computed using

surface pressure integration with a very refined panel ge-

ometry. The geometry of the wake network was computed

using a separate vortex tracking method. The results for

an aspect ratio 7 wing with an unswept trailing edge and

an elliptical chord distribution show less than a 1% change

in lift and less than 0.5% change in induced drag at fixed

lift when the wake is rolled-up. Recent results of reference

11 illustrate similar behavior.

Part of the small difference in results produced with

streamwise and rolled-up wakes is associated with the

change in the lift distribution. In general, the shape of the

lift distribution changes with angle of attack, since even

the straight, freestream wake does not lie in the plane of

the wing, and changes its orientation with respect to the

wing as the freestream direction is varied. In the cases

examined here, however, the trailing edge is straight and

the lift distribution changes little with angle of attack, as

shown in figure 4.
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Figure 4. Effect of Wake Roll-Up on Lift Distribution

When the wing does not have a straight trailing edge,

the situation is more complex. In such cases the near-field

control volume that encloses the lifting surface is located

so that some wake deformation has occurred before the



wakereachestheaft plane.Althoughtheslowdeforma-
tionof thewakedownstreamproduceslittle effectonthe
velocitiesin thisnear-fieldplane,the initial deformation
upstreamof theplanecanbeimportantIt is mostsignif-
icantwhenthewakeisshedfar forwardof thenear-field
planeasin thecaseof staggeredbiplanesystems.In this
case,a substantialchangein theeffectiveverticalgapis
possible.

Computational Approaches

Equation 8 may be used to compute the induced drag

of a wing with a rolled-up vortex wake. However, it is in-

convenient to evaluate this integral over a large area. Sim-

ilarly, surface pressure integration requires extremely high

panel densities to resolve the induced drag to within 1%.

The simpler expressions that require velocities only over

the intersection of the wake sheet with the Trefftz plane

were based on the assumption of streamwise wake vorticity.

The reduction of the 2-D integral to a line integral is not

possible without approximation because of the presence of

terms containing the perturbation velocity, u. Moreover,

even when one ignores these terms, the resulting integral

for drag is very sensitive to the computed wake shape.

Figure 5 illustrates this conclusion. The induced drag was

computed by rolling-up the wake behind an aspect ratio 7

wing with an unswept trailing edge and evaluating the nor-

malwash far downstream. The induced drag values given

by equation 2 resulted in a span efficiency factor of 1.035.

Because of the sparse wake panel spacing in the area of y

= 2.5, an additional panel was added as shown. Span ef-

ficiency was recomputed with the additional panel leading

to a value of 1.082. Similar sensitivity was found to other

changes in computed wake shape. Thus, not only is the

computation of the wake shape time consuming, but the

use of the usual 1-D drag integral is only approximate and

the results are too sensitive to the roll-up calculation to be

of practical value.

In summary, several approaches to the computation of

induced drag with wake deformation are possible:

1) Evaluation of the Trefftz-plane wake integral (equa-

tion 2) is attractive since it involves 1-D integration; how-

ever, if wake deformation is considered the result is sensi-

tive to the computed shape. In most cases, simple far-field

calculations using a streamwise wake provide acceptable

accuracy.

2) Surface pressure integration is a simple alternative,

but requires extremely fine paneling to produce accurate

results.

3) Evaluation of the perturbation velocities over the

surface of a small control volume as in equation 7 is desir-

able when flow field information is available at these points.

It should be noted that large canceling terms have been

eliminated in equation 7 by consideration of mass conser-

vation. This improves the accuracy of this method. The

control volume should be large enough to avoid numerical

errors associated with large gradients in the perturbation

velocities, but small enough to produce acceptable compu-

tation times.

4) Equation 8 may be evaluated over a single "near-

field plane". The area of integration must be expanded

until convergence is achieved. Since the plane is placed

near the trailing edge, results are less sensitive to errors

in computed wake shape than are results of Trefftz-plane

integration.

5) One may compute the initial roll-up of the wake

sheet, extend the vorticity in the freestream direction, and

evaluate the 1-D wake integral (equation 2) over the far

wake. This provides an approximate result with mat of

the influence of wake deformation, little numerical error

introduced from the wake shape calculation, and the sim-

plicity of a one-dimensional integration.
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Figure 5. Effect of Computed Wake Shape on Span

Efficiency from Far-Field Calculation

Additional Corrections

When one ignores the small differences between the

freestream straight wake and the rolled-up wake there are

still some differences between these results and those of

lifting line theory. In many cases, these additional correc-

tions, which are fully expected from the classical theory,



aremoresignificantthanthewakedeformationconsidered
previously.

Planforrn effects

Although the relatively large reductions in induced

drag (8%) initially predicted for crescent-shaped wings

has not been verified by subsequent, more refined anal-

yses, smaller reductions (1-2%) in drag compared with the

unswept elliptic wing planform have been shown. Such an

improvement is not unexpected. Although the planar wake

sheet due to an elliptic distribution of lift induces uniform

downwash far downstream and at the start of the sheet,

at other positions in the wake plane, the velocity pertur-

bations are not uniform. Thus, while lifting line theory

predicts an elliptic distribution of lift for an unswept, un-

twisted elliptic wing planform, lifting surface theory does

not. A flat elliptical wing carries less lift near the tips

than the elliptic load distribution. This can be corrected

by sweeping the tips back, by increasing the chord near the

tips, or by twisting the wing. The chord distribution of a

wing with an unswept quarter chord line was modified un-

til the lift distribution predicted by the A502 panel method

was elliptic. The resulting planform shape is shown in fig-

ure 6 and results in an induced drag very similar to that

of the crescent wing planform.

Figure 6. Wing Planform for Minimum Induced Drag

with Fixed Span

Trailing edge shape and nonplanar wakes

Even if one assumes that the wake trails downstream

in the freestream direction, modifications to the simplified

theory are introduced by changes in wake shape. When the

trailing edge of the wing is not straight, the wake appears

nonplanar when viewed in the freestream direction (Figure

7). This means that its intersection with the Trefftz plane

does not form a straight line. This, in turn, implies that the

optimal span loading differs from the simple planar wing

case and that the maximum span efficiency is greater than

1.0. This effect has been known for some time, mentioned

first in connection with NACA tests of circular planform

wings in the 1930's. 1_ At more usual aspect ratios the effect

is small, but in some cases measurable.
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Figure 7. Curved Trailing Edges Lead to Nonplanar

Wakes

Hoerner 13 also noted this effect in 1953, commenting

that for wings with sweep, "the tips drop below the center

part as the angle of attack is increased to positive val-

ues. The wing assumes in this way an inverted 'V' shape."

Although ttoerner argues that this must increase induced

drag, the nonplanar character of the wing viewed from

the freestream direction may be used to reduce the in-

duced drag below the minimum value for a planar wing.

This idea has been further investigated by Burkett s, and

Lowson 6 who have computed minimum induced drag solu-

tions for wings with nonplanar distributions of circulation

when viewed in the freestream direction (Figure 8). Bur-

kett views the wing as a swept lifting line along the quarter

chord line and considers the resulting nonplanar projection

in the freestream direction. Munk's stagger theorem sug-

gests that the minimum drag of this configuration is equal

to that of the unswept, nonplanar circulation distribution.

Lowson expands on this idea, but notes that, "There are

formal difficulties with this concept of camber-planform

equivalence since lifting line theory and the Munk opti-

mization are based on linearized Trefftz-plane analysis of

the shed wake. The relation of the shed wake shape to the

wing planform distribution remains unclear; for example,

the actual wake shape at the trailing edge of the wing is

not the same as the quarter-chord condition normally as-

sumed." Although Munk did use such a lifting line concept

in his derivation of the stagger theorem, it is completely

unnecessary. The more general derivation of the expres-

sion for induced drag given in the preceding section does

not make use of the lifting line concept at all. The induced

drag depends only on the wake shape and the distribution

of vorticity in the wake. Munk's stagger theorem, that

the induced drag of a general distribution of circulation

does not depend on the longitudinal position of the vor-

tex elements, follows immediately. Munk's results, while

originally derived based on the lifting line model, are much

more general. (Munk later realized this and remarked that,

"My principal paper on the induced drag was still under

the spell of Prandtl's vortex theory...it was not the right

approach.")



Thederivationof the expressionsfor induceddrag
givenhereshowsthat dragis relatedonly to thecircu-
lationdistributionandtheshapeof the projectedwake
downstream.Thus,it is not theshapeof thelifting line
that is important,but rathertheshapeof thewake.Us-
ingthedrag-free,streamwisewakeandignoringtheeffects
of self-induceddeformation,it is the shapeof the wing
trailingedgethatdeterminesthewakeshapedownstream.
Thissuggeststhat wingswithaft-swepttipsandstraight
trailingedgesshouldhavenoadvantagefromnonplanar
wakeeffects,whilewingswithunsweptleadingedgeswould
achieveasmallsavings.The2%dragreductionat a lift
coefficientof about0.5predictedby Burkettfor a "cres-
centwing"withextremetipsweepwouldbeexpectedtobe
lessthan1/3thislargewhenthetrailingedge(ratherthan
quarter-chord)curvatureisused.A wingwithan unswept

leading edge, with the chord distribution or twist needed

for optimal loading, should achieve a slightly greater sav-

ings. For wings with reasonable taper ratios in cruise,

the potential for drag reduction is quite small; however,

at higher angles of attack when trailing edge curvature is

concentrated near the tip regions, more significant savings

appear. When wake deformation occurs upstream of the

most aft part of the trailing edge, the trace of the wake in

the "near-field plane" defines the shape of the projected

wake.

¢o

e-

1.10

1.08

1.06

1.04

1.02

1.00

.98

!

i v.sn_

•00 .05 .10 .15 .20

2h/b

Figure 8. Effect of Nonplanar Streamwise Wakes on

Minimum Induced Drag

Nonlinear lift

The relationship between vorticity in the wake and lift

on the wing section is also more complex than indicated

by the linear assumption of the simple classical theory.

$
0-
.¢

Figure 9 illustrates the distribution of lift, computed by

surface pressure integration on an aspect ratio 7 wing with

a straight trailing edge and elliptical chord distribution.

The figure also shows the distribution of circulation, as

reflected by the doublet strength in the streamwise wake.

The computations were performed using the high order

panel program, A502. Note that although the two curves

match quite closely over much of the wing, a discrepancy

appears in the tip region where the lift is larger than would

be expected on the basis of liner theory. This nonlinear lift

increment is associated with lateral induced velocities from

the wake, increasing the local velocity V in the expression:

I'= pV x F above the freestream value. These lateral veloc-

ities give rise to a lift increment through their interaction

with the streamwise component of vorticity on the wing.

This form of 'vortex lift' increases the overall lift, but does

not change the magnitude of the shed vorticity. The total

lift is increased, compared with the classical linear result,

while the induced drag is unchanged (since the vorticity

distribution in the wake is fixed), leading to higher span

efficiency.
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Figure 9. Distribution of Lift and Doublet Strength

over a Planar Wing

Design Implications

It is of interest to examine the possibility of exploiting

the differences between the more general results discussed

here and those of lifting line theory. Although each of

the effects is small, the combination of the following con-

siderations might be used to produce a measurable drag

reduction.

1) Wake deflection and roll-up leads to induced drag

values slightly different from those computed using a

streamwise wake; one might employ configurations that



takeadvantageof thiseffect.Forsinglewingstheeffectis
negligible,but formultiplelifting surfaces it is not. The ef-

fective vertical gap between two surfaces may be increased

when the forward surface lies below or in the plane of the

second surface. In this case, wake deflection has a first

order effect on drag and is seen to be significant in the

analysis of configurations such as joined wings, canard air-

craft, and sailing vessels with twin keels or keel-rudder

interference. In such cases, approximate results are best

obtained by computing the wake deformation to a point

downstream of the most aft surface, and then extending

the wake streamwise beyond that point.

2) Lifting surface theory leads to the conclusion that

an elliptic distribution of lift requires a non-elliptic chord

distribution, or the inclusion of sweep or twist. Straight,

untwisted elliptical wings achieve a lift distribution that

has 1-2% more drag than the theoretical minimum associ-

ated with an elliptical circulation distribution.

3) The wake of an inclined planar wing with a curved

trailing edge forms a nonplanar sheet, even when the wake

vorticity is projected in the streamwise direction. This

effect increases with angle of attack and is most important

for low aspect ratio wings. An aspect ratio 7 elliptic wing

with straight leading edges and an optimal distribution of

lift would be expected to save 1-2% in cruise induced drag

compared with a wing with a straight trailing edge. Larger

tip chords and higher angles of attack provide the potential

for greater savings.

4) Exploiting the nonlinear lift increments associated

with lateral induced velocities further increases span ef-

ficiency. This leads to somewhat larger tip chords than

would be expected from linear theory. The extra lift leads

to induced drag values at fixed lift of order 0.5% lower than

predicted by linear theory.

Of course, the design of wings involves considerations

such as high-lift performance, structural weight, fuel vol-

ume, and buffet, making it impossible to relate the above

effects to changes in optimal planform shape without re-

fined multidisciplinary analysis. The same is true of the

design of bird's wings and fish tails and it seems unlikely

that the effects mentioned here are responsible for the oft-

cited aft-swept wing-tips and fins of these animals. The

small effects on induced drag are likely overshadowed by

the requirements associated with folding wings, or shed-

ding seaweed.

Conclusions

The basic results of the classical aerodynamic theory

of induced drag, derived without reliance on the simple lift-

ing line model, demonstrate the approximations involved

in the usual simple formulas for vortex drag. Numerical

analysis of simplified vortex systems and of more refined

wing models illustrate the following conclusions:

Trefftz-plane calculations are appropriate for rolled-up

wakes or freestream wakes. The latter is a more practi-

cal approach given sensitivities to the computed shape.

Perhaps more important than wake roll-up are several ad-

ditional approximations made by the simplest of classical

analyses, lifting-line theory. Such analysis generally does

not include effects such as the nonuniform downwash of an

elliptically-loaded wing near its origin, the nonplanar char-

acter of the wake shed from a curved trailing edge, and the

nonlinear relationship between section lift and circulation

especially in the region of wing tips.

Although none of these effects is large for typical high as-

pect ratio wings at moderate angles of attack, the com-

bined effect is important in the accurate evaluation of in-

duced drag.
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