335 research outputs found

    Photoreflectance and surface photovoltage spectroscopy of beryllium-doped GaAs/AlAs multiple quantum wells

    Get PDF
    We present an optical study of beryllium delta-doped GaAs/AlAs multiple quantum well (QW) structures designed for sensing terahertz (THz) radiation. Photoreflectance (PR), surface photovoltage (SPV), and wavelength-modulated differential surface photovoltage (DSPV) spectra were measured in the structures with QW widths ranging from 3 to 20 nm and doping densities from 2×10(10) to 5×10(12) cm(–2) at room temperature. The PR spectra displayed Franz-Keldysh oscillations which enabled an estimation of the electric-field strength of ~20 kV/cm at the sample surface. By analyzing the SPV spectra we have determined that a buried interface rather than the sample surface mainly governs the SPV effect. The DSPV spectra revealed sharp features associated with excitonic interband transitions which energies were found to be in a good agreement with those calculated including the nonparabolicity of the energy bands. The dependence of the exciton linewidth broadening on the well width and the quantum index has shown that an average half monolayer well width fluctuations is mostly predominant broadening mechanism for QWs thinner than 10 nm. The line broadening in lightly doped QWs, thicker than 10 nm, was found to arise from thermal broadening with the contribution from Stark broadening due to random electric fields of the ionized impurities in the structures. We finally consider the possible influence of strong internal electric fields, QW imperfections, and doping level on the operation of THz sensors fabricated using the studied structures. © 2005 American Institute of Physic

    Charge transport across metal/molecular (alkyl) monolayer-Si junctions is dominated by the LUMO level

    Full text link
    We compare the charge transport characteristics of heavy doped p- and n-Si-alkyl chain/Hg junctions. Photoelectron spectroscopy (UPS, IPES and XPS) results for the molecule-Si band alignment at equilibrium show the Fermi level to LUMO energy difference to be much smaller than the corresponding Fermi level to HOMO one. This result supports the conclusion we reach, based on negative differential resistance in an analogous semiconductor-inorganic insulator/metal junction, that for both p- and n-type junctions the energy difference between the Fermi level and LUMO, i.e., electron tunneling, controls charge transport. The Fermi level-LUMO energy difference, experimentally determined by IPES, agrees with the non-resonant tunneling barrier height deduced from the exponential length-attenuation of the current

    Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates

    Get PDF
    It is commonly assumed that recognition and discrimination of chirality, both in nature and in artificial systems, depend solely on spatial effects. However, recent studies have suggested that charge redistribution in chiral molecules manifests an enantiospecific preference in electron spin orientation. We therefore reasoned that the induced spin polarization may affect enantiorecognition through exchange interactions. Here we show experimentally that the interaction of chiral molecules with a perpendicularly magnetized substrate is enantiospecific. Thus, one enantiomer adsorbs preferentially when the magnetic dipole is pointing up, whereas the other adsorbs faster for the opposite alignment of the magnetization. The interaction is not controlled by the magnetic field per se, but rather by the electron spin orientations, and opens prospects for a distinct approach to enantiomeric separations

    Hybridization and Bond-Orbital Components in Site-Specific X-Ray Photoelectron Spectra of Rutile TiO\u3csub\u3e2\u3c/sub\u3e

    Get PDF
    We have determined the Ti and O components of the rutile TiO2 valence band using the method of sitespecific x-ray photoelectron spectroscopy. Comparisons with calculations based on pseudopotentials within the local density approximation reveal the hybridization of the Ti 3d, 4s, and 4p states, and the O 2s and 2p states on each site. These chemical effects are observed due to the large differences between the angular-momentum dependent matrix elements of the photoelectron process

    Electronic structure and magnetism of Mn doped GaN

    Full text link
    Mn doped semiconductors are extremely interesting systems due to their novel magnetic properties suitable for the spintronics applications. It has been shown recently by both theory and experiment that Mn doped GaN systems have a very high Curie temperature compared to that of Mn doped GaAs systems. To understand the electronic and magnetic properties, we have studied Mn doped GaN system in detail by a first principles plane wave method. We show here the effect of varying Mn concentration on the electronic and magnetic properties. For dilute Mn concentration, dd states of Mn form an impurity band completely separated from the valence band states of the host GaN. This is in contrast to the Mn doped GaAs system where Mn dd states in the gap lie very close to the valence band edge and hybridizes strongly with the delocalized valence band states. To study the effects of electron correlation, LSDA+U calculations have been performed. Calculated exchange interaction in (Mn,Ga)N is short ranged in contrary to that in (Mn,Ga)As where the strength of the ferromagnetic coupling between Mn spins is not decreased substantially for large Mn-Mn separation. Also, the exchange interactions are anisotropic in different crystallographic directions due to the presence or absence of connectivity between Mn atoms through As bonds.Comment: 6 figures, submitted to Phys. Rev.

    Light-induced picosecond rotational disordering of the inorganic sublattice in hybrid perovskites.

    Get PDF
    Femtosecond resolution electron scattering techniques are applied to resolve the first atomic-scale steps following absorption of a photon in the prototypical hybrid perovskite methylammonium lead iodide. Following above-gap photoexcitation, we directly resolve the transfer of energy from hot carriers to the lattice by recording changes in the mean square atomic displacements on 10-ps time scales. Measurements of the time-dependent pair distribution function show an unexpected broadening of the iodine-iodine correlation function while preserving the Pb-I distance. This indicates the formation of a rotationally disordered halide octahedral structure developing on picosecond time scales. This work shows the important role of light-induced structural deformations within the inorganic sublattice in elucidating the unique optoelectronic functionality exhibited by hybrid perovskites and provides new understanding of hot carrier-lattice interactions, which fundamentally determine solar cell efficiencies

    Assessment of potential cardiotoxic side effects of mitoxantrone in patients with multiple sclerosis

    Get PDF
    Previous studies showed that mitoxantrone can reduce disability progression in patients with multiple sclerosis (MS). There is, however, concern that it may cause irreversible cardiomyopathy with reduced left ventricular (LV) ejection fraction (EF) and congestive heart failure. The aim of this prospective study was to investigate cardiac side effects of mitoxantrone by repetitive cardiac monitoring in MS patients. The treatment protocol called for ten courses of a combined mitoxantrone (10 mg/m(2) body surface) and methylprednisolone therapy. Before each course, a transthoracic echocardiogram was performed to determine the LV end-diastolic diameter, the end-systolic diameter and the fractional shortening; the LV-EF was calculated. Seventy-three patients participated (32 males; age 48 +/- 12 years, range 20-75 years; 25 with primary progressive, 47 with secondary progressive and 1 with relapsing-remitting MS) who received at least four courses of mitoxantrone. Three of the 73 patients were excluded during the study (2 patients discontinued therapy; 1 patient with a previous history of ischemic heart disease developed atrial fibrillation after the second course of mitoxantrone). The mean cumulative dose of mitoxantrone was 114.0 +/- 33.8 mg. The mean follow-up time was 23.4 months (range 10-57 months). So far, there has been no significant change in any of the determined parameters (end-diastolic diameter, end-systolic diameter, fractional shortening, EF) over time during all follow-up investigations. Mitoxantrone did not cause signs of congestive heart failure in any of the patients. Further cardiac monitoring is, however, needed to determine the safety of mitoxantrone after longer follow-up times and at higher cumulative doses. Copyright (C) 2005 S. Karger AG, Basel

    On-site Coulomb interaction and the magnetism of (GaMn)N and (GaMn)As

    Full text link
    We use the local density approximation (LDA) and LDA+U schemes to study the magnetism of (GaMn)As and (GaMn)N for a number of Mn concentrations and varying number of holes. We show that for both systems and both calculational schemes the presence of holes is crucial for establishing ferromagnetism. For both systems, the introduction of UU increases delocalization of the holes and, simultaneously, decreases the p-d interaction. Since these two trends exert opposite influences on the Mn-Mn exchange interaction the character of the variation of the Curie temperature (TC_C) cannot be predicted without direct calculation. We show that the variation of TC_C is different for two systems. For low Mn concentrations we obtain the tendency to increasing TC_C in the case of (GaMn)N whereas an opposite tendency to decreasing TC_C is obtained for (GaMn)As. We reveal the origin of this difference by inspecting the properties of the densities of states and holes for both systems. The main body of calculations is performed within a supercell approach. The Curie temperatures calculated within the coherent potential approximation to atomic disorder are reported for comparison. Both approaches give similar qualitative behavior. The results of calculations are related to the experimental data.Comment: to appear in Physical Review

    Structure and properties of small sodium clusters

    Get PDF
    We have investigated structure and properties of small metal clusters using all-electron ab initio theoretical methods based on the Hartree-Fock approximation and density functional theory, perturbation theory and compared results of our calculations with the available experimental data and the results of other theoretical works. We have systematically calculated the optimized geometries of neutral and singly charged sodium clusters having up to 20 atoms, their multipole moments (dipole and quadrupole), static polarizabilities, binding energies per atom, ionization potentials and frequencies of normal vibration modes. Our calculations demonstrate the great role of many-electron correlations in the formation of electronic and ionic structure of small metal clusters and form a good basis for further detailed study of their dynamic properties, as well as structure and properties of other atomic cluster systems.Comment: 47 pages, 16 figure
    corecore