13 research outputs found

    Implications on zinc binding to S100A2

    Get PDF
    AbstractHuman S100A2 is an EF-hand calcium-binding S100 protein that is localized mainly in the nucleus and functions as tumor suppressor. In addition to Ca2+ S100A2 binds Zn2+ with a high affinity. Studies have been carried out to investigate whether Zn2+ acts as a regulatory ion for S100A2, as in the case of Ca2+. Using the method of competition with the Zn2+ chelator 4-(2-pyridylazo)-resorcinol, an apparent Kd of 25 nM has been determined for Zn2+ binding to S100A2. The affinity lies close to the range of intracellular free Zn2+ concentrations, suggesting that S100A2 is able to bind Zn2+ in the nucleus. Two Zn2+-binding sites have been identified using site directed mutagenesis and several spectroscopic techniques with Cd2+ and Co2+ as probes. In site 1 Zn2+ is bound by Cys21 and most likely by His 17. The binding of Zn2+ in site 2 induces the formation of a tetramer, whereby the Zn2+ is coordinated by Cys2 from each subunit. Remarkably, only binding of Zn2+ to site 2 substantially weakens the affinity of S100A2 for Ca2+. Analysis of the individual Ca2+-binding constants revealed that the Ca2+ affinity of one EF-hand is decreased about 3-fold, whereas the other EF-hand exhibits a 300-fold decrease in affinity. These findings imply that S100A2 is regulated by both Zn2+ and Ca2+, and suggest that Zn2+ might deactivate S100A2 by inhibiting response to intracellular Ca2+ signals

    Anaerobic Microbial Degradation of Hydrocarbons: From Enzymatic Reactions to the Environment

    Get PDF
    Hydrocarbons are abundant in anoxic environments and pose biochemical challenges to their anaerobic degradation by microorganisms. Within the framework of the Priority Program 1319, investigations funded by the Deutsche Forschungsgemeinschaft on the anaerobic microbial degradation of hydrocarbons ranged from isolation and enrichment of hitherto unknown hydrocarbon-degrading anaerobic microorganisms, discovery of novel reactions, detailed studies of enzyme mechanisms and structures to process-oriented in situ studies. Selected highlights from this program are collected in this synopsis, with more detailed information provided by theme-focused reviews of the special topic issue on 'Anaerobic biodegradation of hydrocarbons' [this issue, pp. 1-244]. The interdisciplinary character of the program, involving microbiologists, biochemists, organic chemists and environmental scientists, is best exemplified by the studies on alkyl-/arylalkylsuccinate synthases. Here, research topics ranged from in-depth mechanistic studies of archetypical toluene-activating benzylsuccinate synthase, substrate-specific phylogenetic clustering of alkyl-/arylalkylsuccinate synthases (toluene plus xylenes, p-cymene, p-cresol, 2-methylnaphthalene, n-alkanes), stereochemical and co-metabolic insights into n-alkane-activating (methylalkyl) succinate synthases to the discovery of bacterial groups previously unknown to possess alkyl-/arylalkylsuccinate synthases by means of functional gene markers and in situ field studies enabled by state-of-the-art stable isotope probing and fractionation approaches. Other topics are Mo-cofactor-dependent dehydrogenases performing O-2-independent hydroxylation of hydrocarbons and alkyl side chains (ethylbenzene, p-cymene, cholesterol, n-hexadecane), degradation of p-alkylated benzoates and toluenes, glycyl radical-bearing 4-hydroxyphenylacetate decarboxylase, novel types of carboxylation reactions (for acetophenone, acetone, and potentially also benzene and naphthalene), W-cofactor-containing enzymes for reductive dearomatization of benzoyl-CoA (class II benzoyl-CoA reductase) in obligate anaerobes and addition of water to acetylene, fermentative formation of cyclohexanecarboxylate from benzoate, and methanogenic degradation of hydrocarbons

    Book review

    No full text

    Tissue- and Age-Dependent Differences in the Complexation of Cadmium and Zinc in the Cadmium/Zinc Hyperaccumulator Thlaspi caerulescens (Ganges Ecotype) Revealed by X-Ray Absorption Spectroscopy

    No full text
    Extended x-ray absorption fine structure measurements were performed on frozen hydrated samples of the cadmium (Cd)/zinc (Zn) hyperaccumulator Thlaspi caerulescens (Ganges ecotype) after 6 months of Zn(2+) treatment with and without addition of Cd(2+). Ligands depended on the metal and the function and age of the plant tissue. In mature and senescent leaves, oxygen ligands dominated. This result combined with earlier knowledge about metal compartmentation indicates that the plants prefer to detoxify hyperaccumulated metals by pumping them into vacuoles rather than to synthesize metal specific ligands. In young and mature tissues (leaves, petioles, and stems), a higher percentage of Cd was bound by sulfur (S) ligands (e.g. phytochelatins) than in senescent tissues. This may indicate that young tissues require strong ligands for metal detoxification in addition to the detoxification by sequestration in the epidermal vacuoles. Alternatively, it may reflect the known smaller proportion of epidermal metal sequestration in younger tissues, combined with a constant and high proportion of S ligands in the mesophyll. In stems, a higher proportion of Cd was coordinated by S ligands and of Zn by histidine, compared with leaves of the same age. This may suggest that metals are transported as stable complexes or that the vacuolar oxygen coordination of the metals is, like in leaves, mainly found in the epidermis. The epidermis constitutes a larger percentage of the total volume in leaves than in stems and petioles. Zn-S interaction was never observed, confirming earlier results that S ligands are not involved in Zn resistance of hyperaccumulator plants

    The role of molecular oxygen in the iron(III)-promoted oxidative dehydrogenation of amines

    No full text
    A mechanistic study is presented of the oxidative dehydrogenation of the iron(III) complex [FeIIIL3]3+, 1, (L3 = 1,9-bis(2′-pyridyl)-5-[(ethoxy-2′′-pyridyl)methyl]-2,5,8-triazanonane) in ethanol in the presence of molecular oxygen. The product of the reaction was identified by NMR spectroscopy and X-ray crystallography as the identical monoimine complex [FeIIL4]2+, 2, (L4 = 1,9-bis(2′-pyridyl)-5-[(ethoxy-2′′-pyridyl)methyl]-2,5,8-triazanon-1-ene) also formed under an inert nitrogen atmosphere. Molecular oxygen is an active player in the oxidative dehydrogenation of iron(III) complex 1. Reduced oxygen species, e.g., superoxide, (O2˙−) and peroxide (O22−), are formed and undergo single electron transfer reactions with ligand-based radical intermediates. The experimental rate law can be described by the third order rate equation, −d[(FeIIIL3)3+]/dt = kOD[(FeIIIL3)3+][EtO−][O2], with kOD = 3.80 ± 0.09 × 107 M−2 s−1 (60 °C, μ = 0.01 M). The reduction O2 → O2˙− represents the rate determining step, with superoxide becoming further reduced to peroxide as shown by a coupled heme catalase assay. In an independent study, with H2O2, replacing O2 as the oxidant, the experimental rate law depended on [H2O2]: −d[(FeIIIL3)3+]/dt = kH2O2[(FeIIIL3)3+][H2O2]), with kH2O2 = 6.25 ± 0.02 × 10−3 M−1 s−1. In contrast to the reaction performed under N2, no kinetic isotope effect (KIE) or general base catalysis was found for the reaction of iron(III) complex 1 with O2. Under N2, two consecutive one-electron oxidation steps of the ligand coupled to proton removal produced the iron(II)-monoimine complex [FeIIL4]2+ and the iron(II)-amine complex [FeIIL3]2+ in a 1 : 1 ratio (disproportionation), with the amine deprotonation being the rate determining step. Notably, the reaction is almost one order of magnitude faster in the presence of O2, with kEtO− = 3.02 ± 0.09 × 105 M−1 s−1 (O2) compared to kEtO− = 4.92 ± 0.01 × 104 M−1 s−1 (N2), documenting the role of molecular oxygen in the dehydrogenation reaction

    The cupric site in nitrous oxide reductase contains a mixed-valence [Cu(II),Cu(I)] binuclear center: A multifrequency electron paramagnetic resonance investigation

    Get PDF
    AbstractMultifrequency electron paramagnetic resonance (EPR) spectra of the Cu(II) site in nitrous oxide reductase (N2OR) from Pseudomonas stutzeri confirm the assignment of the low field g value at 2.18 consistent with the seven line pattern observed at 9.31 GHz, 10 K. S-band spectra at 20 K are better resolved than the X-band spectra recorded at 10 K. The features observed at 2.4, 3.4, 9.31 and 35 GHz are explained by a mixed-valence [Cu(1.5)..Cu(1.5)] S= 1/2 species with the unpaired electron delocalized between two equivalent Cu nuclei. The resemblance of the N2OR S-band spectra to the spectra for the EPR-detectable Cu of cytochrome c oxidase suggests that the S-band spectrum for cytochrome c oxidase measured below 30 K may also contain hyperfine splittings from two approximately equivalent Cu nuclei
    corecore