227 research outputs found

    The Effects of Luminance Boundaries on Color Perception

    Get PDF
    The luminance and red-green chromatic detection mechanisms respond to, respectively, the sum and difference of the long-wave (L) and middle-wave (M) zone contrast signals. The most-detectable stimulus is not a small patch of luminance drifting grating, as suggested by others, but rather a small, foveal red-green chromatic flash. Even at the smallest test size examined, 2.3\u27 diameter, the red-green mechanism i~s more sensitive than the luminance mechanism, which has profound implication for visual physiology. When a suprathreshold luminance flash (a pedestal) occurs coincidentally with a red-green chromatic flash, detection of color is facilitated ~2-fold, regardless of spot size, as shown by forced-choice results, and this constant facilitation contrasts with the much larger facilitation reported earlier for small flashes. The lack of chromatic masking by suprathreshold luminance pedestals supports the view of separable luminance and red-green detectors. Isolation of the red-green mechanism with large test flashes on different colored backgrounds showed that the red-green mechanism responds to an equally-weighted difference of L and M cone contrast on each background. Even for fields as low as 400 trolands, sensitivity is controlled by cone-selective adaptation (as well as second-site adaptation), which is surprising in view of recent physiological recordings suggesting that light adaptation in cones is insignificant below 2000 trolands. Motion mechanisms receiving L and M cone signals were studied with 1 cpd, flickering and drifting gratings. At low velocity, a spectrally-opponent (SPO) motion mechanism is more sensitive than the luminance (LUM) mechanism, which summates L and M signals. The SPO mechanism has equal L and M contrast weights at low velocity but is L-cone dominated at intermediate and high velocity, whereas the LUM mechanism shows the reverse pattern of weights. The SPO motion mechanism appears distinct frown a red-green hue mechanism, for the latter has balanced L and M inputs at all temporal frequencies. The two motion mechanisms can be distinguished by the relative phase shifts of the L and M inputs: large shifts are seen for the LUM mechanism at intermediate frequency (4-9 Hz), where SPO shows very little shifts

    Non-nest mate discrimination and clonal colony structure in the parthenogenetic ant Cerapachys biroi

    Get PDF
    Understanding the interplay between cooperation and conflict in social groups is a major goal of biology. One important factor is genetic relatedness, and animal societies are usually composed of related but genetically different individuals, setting the stage for conflicts over reproductive allocation. Recently, however, it has been found that several ant species reproduce predominantly asexually. Although this can potentially give rise to clonal societies, in the few well-studied cases, colonies are often chimeric assemblies of different genotypes, due to worker drifting or colony fusion. In the ant Cerapachys biroi, queens are absent and all individuals reproduce via thelytokous parthenogenesis, making this species an ideal study system of asexual reproduction and its consequences for social dynamics. Here, we show that colonies in our study population on Okinawa, Japan, recognize and effectively discriminate against foreign workers, especially those from unrelated asexual lineages. In accord with this finding, colonies never contained more than a single asexual lineage and average pairwise genetic relatedness within colonies was extremely high (r = 0.99). This implies that the scope for social conflict in C. biroi is limited, with unusually high potential for cooperation and altruis

    Renewed diversification is associated with new ecological opportunity in the N eotropical turtle ants

    Full text link
    Ecological opportunity, defined as access to new resources free from competitors, is thought to be a catalyst for the process of adaptive radiation. Much of what we know about ecological opportunity, and the larger process of adaptive radiation, is derived from vertebrate diversification on islands. Here, we examine lineage diversification in the turtle ants ( C ephalotes ), a species‐rich group of ants that has diversified throughout the N eotropics. We show that crown group turtle ants originated during the E ocene (around 46 mya), coincident with global warming and the origin of many other clades. We also show a marked lineage‐wide slowdown in diversification rates in the M iocene. Contrasting this overall pattern, a species group associated with the young and seasonally harsh C hacoan biogeographic region underwent a recent burst of diversification. Subsequent analyses also indicated that there is significant phylogenetic clustering within the C hacoan region and that speciation rates are highest there. Together, these findings suggest that recent ecological opportunity, from successful colonization of novel habitat, may have facilitated renewed turtle ant diversification. Our findings highlight a central role of ecological opportunity within a successful continental radiation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/102632/1/jeb12300-sup-0001-AppendixFigS1-S4-TableS1-S4.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/102632/2/jeb12300.pd

    The genomic basis of army ant chemosensory adaptations

    Get PDF
    The evolution of mass raiding has allowed army ants to become dominant arthropod predators in the tropics. Although a century of research has led to many discoveries about behavioural, morphological and physiological adaptations in army ants, almost nothing is known about the molecular basis of army ant biology. Here we report the genome of the iconic New World army ant Eciton burchellii, and show that it is unusu-ally compact, with a reduced gene complement relative to other ants. In contrast to this overall reduction, a particular gene subfamily (9-exon ORs) expressed predomi-nantly in female antennae is expanded. This subfamily has previously been linked to the recognition of hydrocarbons, key olfactory cues used in insect communication and prey discrimination. Confocal microscopy of the brain showed a correspond-ing expansion in a putative hydrocarbon response centre within the antennal lobe, while scanning electron microscopy of the antenna revealed a particularly high den-sity of hydrocarbon-sensitive sensory hairs. E. burchellii shares these features with its predatory and more cryptic relative, the clonal raider ant. By integrating genomic, transcriptomic and anatomical analyses in a comparative context, our work thus pro-vides evidence that army ants and their relatives possess a suite of modifications in the chemosensory system that may be involved in behavioural coordination and prey selection during social predation. It also lays the groundwork for future studies of army ant biology at the molecular level.National Science Foundation/[NSF IOS 1916995]/NSF/Estados UnidosNational Science Foundation/[NSF DEB 1900357]/NSF/Estados UnidosUniversity of Wisconsin-Madison/[BE 5177/4-1]//Estados UnidosUniversidad de Costa Rica/[810-B3-273]/UCR/Costa RicaNational Institutes of Health/[GM066699]/NIH/Estados UnidosMarie Skłodowska-Curie Individual Fellowship/[ID 797969]/MSCA IF/BélgicaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Estructuras Microscópicas (CIEMIC)UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Biología Celular y Molecular (CIBCM)UCR::Vicerrectoría de Docencia::Salud::Facultad de Medicina::Escuela de Medicin

    Plasticity of the Intrinsic Period of the Human Circadian Timing System

    Get PDF
    Human expeditions to Mars will require adaptation to the 24.65-h Martian solar day-night cycle (sol), which is outside the range of entrainment of the human circadian pacemaker under lighting intensities to which astronauts are typically exposed. Failure to entrain the circadian time-keeping system to the desired rest-activity cycle disturbs sleep and impairs cognitive function. Furthermore, differences between the intrinsic circadian period and Earth's 24-h light-dark cycle underlie human circadian rhythm sleep disorders, such as advanced sleep phase disorder and non-24-hour sleep-wake disorders. Therefore, first, we tested whether exposure to a model-based lighting regimen would entrain the human circadian pacemaker at a normal phase angle to the 24.65-h Martian sol and to the 23.5-h day length often required of astronauts during short duration space exploration. Second, we tested here whether such prior entrainment to non-24-h light-dark cycles would lead to subsequent modification of the intrinsic period of the human circadian timing system. Here we show that exposure to moderately bright light (∼450 lux; ∼1.2 W/m2) for the second or first half of the scheduled wake episode is effective for entraining individuals to the 24.65-h Martian sol and a 23.5-h day length, respectively. Estimations of the circadian periods of plasma melatonin, plasma cortisol, and core body temperature rhythms collected under forced desynchrony protocols revealed that the intrinsic circadian period of the human circadian pacemaker was significantly longer following entrainment to the Martian sol as compared to following entrainment to the 23.5-h day. The latter finding of after-effects of entrainment reveals for the first time plasticity of the period of the human circadian timing system. Both findings have important implications for the treatment of circadian rhythm sleep disorders and human space exploration

    A remarkable legion of guests: Diversity and host specificity of army ant symbionts

    Get PDF
    Tropical rainforests are among the most diverse biomes on Earth. While species inventories are far from complete for any tropical rainforest, even less is known about the intricate species interactions that form the basis of these ecological communities. One fascinating but poorly studied example are the symbiotic associations between army ants and their rich assemblages of parasitic arthropod guests. Hundreds of these guests, or myrmecophiles, have been taxonomically described. However, because previous work has mainly been based on haphazard collections from disjunct populations, it remains challenging to define species boundaries. We therefore know little about the species richness, abundance and host specificity of most guests in any given population, which is crucial to understand co‐evolutionary and ecological dynamics. Here, we report a quantitative community survey of myrmecophiles parasitizing the six sympatric Eciton army ant species in a Costa Rican rainforest. Combining DNA barcoding with morphological identification of over 2,000 specimens, we discovered 62 species, including 49 beetles, 11 flies, one millipede and one silverfish. At least 14 of these species were new to science. Ecological network analysis revealed a clear signal of host partitioning, and each Eciton species was host to both specialists and generalists. These varying degrees in host specificities translated into a moderate level of network specificity, highlighting the system's level of biotic pluralism in terms of biodiversity and interaction diversity. By providing vouchered DNA barcodes for army ant guest species, this study provides a baseline for future work on co‐evolutionary and ecological dynamics in these species‐rich host-symbiont networks across the Neotropical realm

    Analysis Method and Experimental Conditions Affect Computed Circadian Phase from Melatonin Data

    Get PDF
    Accurate determination of circadian phase is necessary for research and clinical purposes because of the influence of the master circadian pacemaker on multiple physiologic functions. Melatonin is presently the most accurate marker of the activity of the human circadian pacemaker. Current methods of analyzing the plasma melatonin rhythm can be grouped into three categories: curve-fitting, threshold-based and physiologically-based linear differential equations. To determine which method provides the most accurate assessment of circadian phase, we compared the ability to fit the data and the variability of phase estimates for seventeen different markers of melatonin phase derived from these methodological categories. We used data from three experimental conditions under which circadian rhythms - and therefore calculated melatonin phase - were expected to remain constant or progress uniformly. Melatonin profiles from older subjects and subjects with lower melatonin amplitude were less likely to be fit by all analysis methods. When circadian drift over multiple study days was algebraically removed, there were no significant differences between analysis methods of melatonin onsets (P = 0.57), but there were significant differences between those of melatonin offsets (P<0.0001). For a subset of phase assessment methods, we also examined the effects of data loss on variability of phase estimates by systematically removing data in 2-hour segments. Data loss near onset of melatonin secretion differentially affected phase estimates from the methods, with some methods incorrectly assigning phases too early while other methods assigning phases too late; missing data at other times did not affect analyses of the melatonin profile. We conclude that melatonin data set characteristics, including amplitude and completeness of data collection, differentially affect the results depending on the melatonin analysis method used

    How Coupling Determines the Entrainment of Circadian Clocks

    Full text link
    Autonomous circadian clocks drive daily rhythms in physiology and behaviour. A network of coupled neurons, the suprachiasmatic nucleus (SCN), serves as a robust self-sustained circadian pacemaker. Synchronization of this timer to the environmental light-dark cycle is crucial for an organism's fitness. In a recent theoretical and experimental study it was shown that coupling governs the entrainment range of circadian clocks. We apply the theory of coupled oscillators to analyse how diffusive and mean-field coupling affects the entrainment range of interacting cells. Mean-field coupling leads to amplitude expansion of weak oscillators and, as a result, reduces the entrainment range. We also show that coupling determines the rigidity of the synchronized SCN network, i.e. the relaxation rates upon perturbation. %(Floquet exponents). Our simulations and analytical calculations using generic oscillator models help to elucidate how coupling determines the entrainment of the SCN. Our theoretical framework helps to interpret experimental data

    Modeling Light Adaptation in Circadian Clock: Prediction of the Response That Stabilizes Entrainment

    Get PDF
    Periods of biological clocks are close to but often different from the rotation period of the earth. Thus, the clocks of organisms must be adjusted to synchronize with day-night cycles. The primary signal that adjusts the clocks is light. In Neurospora, light transiently up-regulates the expression of specific clock genes. This molecular response to light is called light adaptation. Does light adaptation occur in other organisms? Using published experimental data, we first estimated the time course of the up-regulation rate of gene expression by light. Intriguingly, the estimated up-regulation rate was transient during light period in mice as well as Neurospora. Next, we constructed a computational model to consider how light adaptation had an effect on the entrainment of circadian oscillation to 24-h light-dark cycles. We found that cellular oscillations are more likely to be destabilized without light adaption especially when light intensity is very high. From the present results, we predict that the instability of circadian oscillations under 24-h light-dark cycles can be experimentally observed if light adaptation is altered. We conclude that the functional consequence of light adaptation is to increase the adjustability to 24-h light-dark cycles and then adapt to fluctuating environments in nature

    Inclusive fitness theory and eusociality

    Get PDF
    corecore