96 research outputs found
Statistical properties of an ensemble of vortices interacting with a turbulent field
We develop an analytical formalism to determine the statistical properties of
a system consisting of an ensemble of vortices with random position in plane
interacting with a turbulent field. We calculate the generating functional by
path-integral methods. The function space is the statistical ensemble composed
of two parts, the first one representing the vortices influenced by the
turbulence and the second one the turbulent field scattered by the randomly
placed vortices.Comment: Third version; Important corrections in the normalization for the gas
of vortices, et
Diffusion and dispersion of passive tracers: Navier-Stokes versus MHD turbulence
A comparison of turbulent diffusion and pair-dispersion in homogeneous,
macroscopically isotropic Navier-Stokes (NS) and nonhelical magnetohydrodynamic
(MHD) turbulence based on high-resolution direct numerical simulations is
presented. Significant differences between MHD and NS systems are observed in
the pair-dispersion properties, in particular a strong reduction of the
separation velocity in MHD turbulence as compared to the NS case. It is shown
that in MHD turbulence the average pair-dispersion is slowed down for
, being
the Kolmogorov time, due to the alignment of the relative Lagrangian tracer
velocity with the local magnetic field. Significant differences in turbulent
single-particle diffusion in NS and MHD turbulence are not detected. The fluid
particle trajectories in the vicinity of the smallest dissipative structures
are found to be characterisically different although these comparably rare
events have a negligible influence on the statistics investigated in this work.Comment: Europhysics Letters, in prin
Thermal conduction and particle transport in strong MHD turbulence, with application to galaxy-cluster plasmas
We investigate field-line separation in strong MHD turbulence analytically
and with direct numerical simulations. We find that in the
static-magnetic-field approximation the thermal conductivity in galaxy clusters
is reduced by a factor of about 5-10 relative to the Spitzer thermal
conductivity of a non-magnetized plasma. We also estimate how the thermal
conductivity would be affected by efficient turbulent resistivity.Comment: Major revision: higher resolution simulations lead to significantly
different conclusions. 26 pages, 10 figure
Renormalized dissipation in the nonconservatively forced Burgers equation
A previous calculation of the renormalized dissipation in the nonconservatively forced one-dimensional Burgers equation, which encountered a catastrophic long-wavelength divergence approximately [k min]-3, is reconsidered. In the absence of velocity shear, analysis of the eddy-damped quasi-normal Markovian closure predicts only a benign logarithmic dependence on kmin. The original divergence is traced to an inconsistent resonance-broadening type of diffusive approximation, which fails in the present problem. Ballistic scaling of renormalized pulses is retained, but such scaling does not, by itself, imply a paradigm of self-organized criticality. An improved scaling formula for a model with velocity shear is also given
Hamiltonian description of convective-cell generation
The nonlinear statistical growth rate eq for convective cells driven by drift-wave (DW) interactions is studied with the aid of a covariant Hamiltonian formalism for the gyrofluid nonlinearities. A statistical energy theorem is proven that relates eq to a second functional tensor derivative of the DW energy. This generalizes to a wide class of systems of coupled partial differential equations a previous result for scalar dynamics. Applications to (i) electrostatic ion-temperature-gradient-driven modes at small ion temperature, and (ii) weakly electromagnetic collisional DW's are noted
Influence of zonal flows on unstable drift modes in ETG turbulence
The linear instability of the electron temperature gradient (ETG) driven
modes in the presence of zonal flows is investigated. Random and deterministic
- like profiles of the zonal flow are considered. It is shown that the
presence of shearing by zonal flows can stabilize the linear instability of ETG
drift modes
Trajectory structures and transport
The special problem of transport in 2-dimensional divergence-free stochastic
velocity fields is studied by developing a statistical approach, the nested
subensemble method. The nonlinear process of trapping determined by such fields
generates trajectory structures whose statistical characteristics are
determined. These structures strongly influence the transport.Comment: Latex file 19 pages, includes 12 EPS figures. Extended version of the
invited talk at the ITCPP, Santorini, 200
Recommended from our members
Hamiltonian Description of Convective-cell Generation
The nonlinear statistical growth rate eq for convective cells driven by drift-wave (DW) interactions is studied with the aid of a covariant Hamiltonian formalism for the gyrofluid nonlinearities. A statistical energy theorem is proven that relates eq to a second functional tensor derivative of the DW energy. This generalizes to a wide class of systems of coupled partial differential equations a previous result for scalar dynamics. Applications to (i) electrostatic ion-temperature-gradient-driven modes at small ion temperature, and (ii) weakly electromagnetic collisional DW's are noted
- …