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Hamiltonian description of convective-cell generation

J. A. Krommes and R. A. Kolesnikov∗
Plasma Physics Laboratory, Princeton University, P.O. Box 451, Princeton, New Jersey 08543

(Dated: February 26, 2004)

The nonlinear statistical growth rate γq for convective cells driven by drift-wave (DW) interactions
is studied with the aid of a covariant Hamiltonian formalism for the gyrofluid nonlinearities. A
statistical energy theorem is proven that relates γq to a second functional tensor derivative of the
DW energy. This generalizes to a wide class of systems of coupled partial differential equations a
previous result for scalar dynamics. Applications to (i) electrostatic ion-temperature-gradient-driven
modes at small ion temperature, and (ii) weakly electromagnetic collisional DW’s are noted.

We present a covariant Hamiltonian derivation of the
nonlinear statistical growth rate γq of long-wavelength
convective cells [CC’s; wavevector q = (qx, qy, 0)] driven
by short-wavelength drift waves [DW’s; wavevector k =
(kx, ky, kz 6= 0)]. The concise result encompasses all pre-
viously known results for dynamics governed by scalar
field equations and also applies to systems of coupled par-
tial differential equations (PDE’s) that are very difficult
to treat by standard procedures. We focus on the gen-
eral formalism, but do comment briefly on the calculation
of γq for CC’s driven by (i) electrostatic ion-temperature-
gradient-driven (ITG) fluctuations, and (ii) weakly elec-
tromagnetic collisional DW’s.

The original attempt at a workable formalism for the
calculation of γq was made for the special case of zonal
flows [q = (qx, 0, 0)] by Diamond et al.,1 who attempted
to use WKB methods to calculate the modulational ef-
fect on the DW’s. Krommes and Kim2 (KK) revisited,
critiqued, and generalized those calculations and showed
how the ideas were related to Markovian closures3 and
statistical field theory.2–4 For the instructive limit of cold
ions, their result was the most general to date, as their
expression for γq pertained to all convective cells, not just
zonal flows. [Apparently unaware of the work in Ref. 2,
Kim and Diamond5 (KD) later published a different ex-
pression for the cold-ion γq. However, a conceptual error
in that calculation was identified by Krommes;6 when
corrected, the calculation of KD was brought into agree-
ment with the earlier one of KK.]

In all calculations to date, a scalar wave kinetic equa-
tion (WKE) was employed for the DW’s and γq was found
to depend on the spectral density Zk of a conserved quan-
tity Z that we note below is a Casimir invariant. How-
ever, most applications are naturally formulated in terms
of systems of coupled fields and require the use of a tensor
spectral balance equation for the correlation matrix C.
There may be multiple Casimirs, all of which constrain
the dynamics but are fewer in number than the indepen-
dent elements of C. Preferentially singling out individual
components of the tensor WKE leads to tedious algebra
that obscures the general structure. What is needed is a
formulation that treats all components of the WKE on
equal footing. By focusing on the Hamiltonian structure
of the nonlinear interactions and expressing the resulting
dynamics in a (nonrelativistic) covariant way, we have

obtained such a description. In general, γq no longer de-
pends merely on a scalar Zk even for a single Casimir,
although its form is constrained by Casimir conservation.

Since the work of Morrison, Greene, and others in
the 1980’s (reviewed in Ref. 7), it has been recognized
that nondissipative nonlinear systems frequently possess
a (noncanonical) Hamiltonian structure. Therefore, we
assume that we are given the coupled system of PDE’s
∂tψ

i = Li
jψ

j + {ψi,H}, where linear dynamics are de-
scribed by the linear operator Li

j (independent of ψ ≡
ψi), summation over repeated indices is assumed, the
Hamiltonian functional H[ψ] is given, and {· , ·} is an
appropriate Poisson-bracket operator. We assume that
H has the form of a generalized kinetic energy, namely
H[ψ] = 1

2
ψiĝijψj , where the overline denotes the inte-

gral over all space and ĝ is a symmetric covariant ma-
trix linear integral operator [ĝ = ĝ(∇)] independent of
both ψ and t. The key properties of the bracket are an-
tisymmetry ({A,B} = −{B,A}) and the Jacobi identity
({{A,B}, C} + {{B,C}, A} + {{C,A}, B} = 0), where
A, B, and C are arbitrary functionals. We consider a
noncanonical bracket of Lie-Poisson form,7

{A,B} = Sij

[
δA

δψi
,
δB

δψj

]
, (1)

where S is symmetric and linear in ψ (Sij [ψ] = Sij
kψ

k)
and [· , ·] denotes the x-space Poisson bracket

[A,B] .= (∂xA)(∂yB)−(∂yA)(∂xB) = ẑ×∇A ·∇B (2)

( .= denotes definition). The Jacobi identity is satisfied if
T ijk

m
.= Sij

lS
lk

m is fully symmetric in i, j, and k (∀m).
Although the above assumptions are restrictive, they

encompass many physical systems, especially those that
describe magnetized plasmas dominated by the essen-
tially two-dimensional E×B nonlinearity. For example,
as discussed later, the nonlinear dynamics of ITG modes
at small τ .= Ti/Te are described by the Hamiltonian
(15) and the structure matrix (16b). This new result
generalizes the known bracket structure of the 2D Euler
equation for vorticity ω, namely7 ∂tω = {ω,H}, where
H[ω] = 1

2ω(−∇−2)ω and {A,B} = ω [δA/δω, δB/δω].
Properties of the x-space Poisson brackets include

[A,B] = −[B,A], [A,BC] = B[A,C] + [A,B]C, and
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A[B,C] = [A,B]C. These results are useful in deriv-
ing conservation laws. For example, one proves that H is
nonlinearly conserved as follows. From Eq. (1), the non-
linear dynamics can be written explicitly as

ψ̇i = {ψi,H} = −[Sij , δH/δψj]. (3)

Then, upon noting that Ḣ = (δH/δψi)ψ̇i, one has

Ḣ = − δH
δψi

[
Sij ,

δH
δψj

]
= −Sij

[
δH
δψj

,
δH
δψi

]
= 0, (4)

the last result following from the contraction of a sym-
metric and an antisymmetric form. Similarly, it is easy to
show that when Sij

k = Sik
j the invariant Z .= 1

2ψ
iψi is

also conserved. Z is a Casimir invariant,7 i.e., conserved
for arbitrary Hamiltonian. The quantities discussed by
Smolyakov and Diamond8 and KK as being conserved
under modulation and identified as appropriate plasmon
densities are special cases of this invariant. (Casimir in-
variants can exist even when Sij

k 6= Sik
j .)

According to Eq. (3), ψ̇ is determined by ψi and
ψ̂i

.= δH/δψi = ĝijψ
j . Because ĝ is symmetric, it can

serve as a covariant metric tensor14 that lowers con-
travariant indices to covariant ones. Thus ψ̂ is the covari-
ant representation of ψ (ψ̂i = ψi), and H can be written
covariantly as H = 1

2ψ
iψi. Note that ĝij = δψ̂i/δψ

j .
It must be emphasized that γq is a statistical property

of the dynamics; it describes the mean growth rate of the
CC energy spectrum after averaging over an ensemble
of random DW’s and random CC’s. For homogeneous
statistics, the correlation matrix Cij

k
.= 〈ψi

kψ
j
k
∗〉 obeys

∂tCk = [(Lk −Σk) · Ck]H + · · · , (5)

where H denotes the Hermitian part and the dots indi-
cate omitted nonlinear-noise terms.3 The nonlinear mass
operator Σ was discussed at length in Refs. 2 and 3.
In non-Markovian statistical field theory, the procedure
of Martin, Siggia, and Rose2–4 shows that Σ(t; t′) =
δG(t)/δ〈ψ〉(t′)|η̂=0 (the semicolon denotes causality),
where G .= 〈G̃〉, G̃ .= [S; ψ̂] (the divergence of a gener-
alized flux; the semicolon implies matrix multiplication
as well as the usual Poisson-bracket comma), and η̂(x, t)
is an arbitrary source added to the right-hand side of
Eq. (3). Note that the variation is with respect to the
mean field, and that after averaging over homogeneous
statistics all mean fields vanish for η̂ = 0. The purpose
of η̂ is to break the symmetry, thereby allowing func-
tional relationships between the statistical quantities of
various orders3,4 to be uncovered.2 Further steps must be
taken to reduce Σ(t; t′) to a Markovian form. The pro-
cedure involves the introduction of a tensor interaction
time θ̂, as discussed in Ref. 2 for the scalar case.
γq is determined2 by ΣH

q , which we now show can be
obtained from second variation of an energy functional.
The procedure involves the projection of the fluctuations
into the DW (ψ′) and CC (ψ) subspaces [the underline

means integrate over z; note that for any A(x) one has
A = A]. Upon projecting Eq. (3), one obtains

ψ̇′ = −[S′; ψ̂]− [S; ψ̂′]− ([S′; ψ̂′]− G̃) + η̂′, (6a)

ψ̇ = −G̃+ η̂, (6b)

where G̃ .= [S′; ψ̂′] and tilde denotes a random function.
(Some tildes are omitted to avoid clutter.) The short-

wavelength energy Ẽ .= H[ψ′] obeys ˙̃E = ψ̂′ · ψ̇′, or

˙̃E = −ψ̂′ · [S′; ψ̂′
]− ψ̂′ · [S; ψ̂

′
] + ψ̂′ · η̂′ (7a)

= [S′; ψ̂′] · ψ̂ − Tr
(
S · [ψ̂′, ψ̂′]

)
+ ψ̂′ · η̂′. (7b)

The first term contains the definition of G̃. The second
term vanishes due to the antisymmetry of the Poisson
bracket [cf. Eq. (4)]. Upon averaging Eq. (7b), noting
that 〈ψ′〉 = 〈ψ′〉 = 0, and defining Q .= 〈ψ〉, P .= 〈ψ̂〉,
G

.= 〈G̃〉, and E .= 〈Ẽ〉, we are led to the generalized
Poynting theorem2 Ė ≈ G ·P . (We neglected statisti-
cal correlations between G̃ and ψ̂.2) The x dependences
of G and P arise from the source η̂; for η̂ = 0 and ho-
mogeneous statistics, G, P , and Ė all vanish.

For slowly varying CC quantities, we now write (X, T )
instead of (x, t). Assuming Markovian statistics, we
treat T as a parameter; functionals are integrated only
over the dummy integration variable X . Then

δĖ/δP i(X) = Gi(X) + Σki(X ;X) · P k(X), (8)

where the contravariant CC mass operator is defined by
Σik(X;X′) .= δGi(X)/δP k(X′). At second order we
may differentiate with respect to either Q or P . Q pro-
duces a covariant index, as can be seen by noting that
ĝkj = δP k/δQ

j and Σkigkj = Σj
i. Upon Fourier trans-

forming (X −X′ → q), we obtain for η̂ = 0

δ2Ė
δP ∗q,iδP q,j

= 2(ΣH
q )ij,

δ2Ė
δP∗q,iδQ

j
q

= 2(ΣH
q )i

j, (9)

where ΣH .= 1
2(Σ+Σ†) and Σi

j(q)†
.= Σj

i(q)∗. The sig-
nificance of ΣH can be understood by writing the nonlin-
ear part of Eq. (5) for the CC’s and lowering the second
index to obtain ∂tC

i
j = −2(Σi

kC
k

j)H = −2(ΣikCkj)H .
Upon noting that Ci

j is Hermitian, one obtains the
rate of change of the mean CC energy E = 1

2C
i
i as

Ė = −(ΣH)i
kC

k
i = −(ΣH)ikCki. Thus knowledge of

C and ΣH completely determines γq
.= Ėq/2Eq, e.g.,15

γq = −[(ΣH
q )ijCji(q)]/C

k
k(q) (10a)

= −1
2

(
δ2Ė

δP ∗q,iδP q,j
Cji(q)

)/
Ck

k(q). (10b)

To find an explicit expression for Ė due to the CC’s,
one must generalize Eq. (5) to weakly inhomogeneous
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statistics. An extensive discussion of the scalar case
was given in Ref. 2. Two-point observables are written
as A(x, t,x′, t′) = A(ρ, τ | X, T ), where ρ .= x − x′,
X

.= 1
2 (x+ x′), τ .= t − t′, and T .= 1

2 (t+ t′). Note that
A

.=
∫
dxA(x,x) =

∑
k

∫
dX Ak(X), where the Fourier

transform is with respect to ρ. If under CC modulation
the DW’s evolve according to ∂tψ

′ + iΩ̂ · ψ′ = 0, where
Ω̂ is a linear operator (possibly a product of two non-
commuting operators Â and B̂) whose Fourier transform
is Ωk(X), then the tensor WKE for the DW spectrum is

∂T Ck(X, T ) = 2(Ωk ·Ck)A− ({Ωk; C}+{Ak; Bk} ·Ck)H ,
(11)

where MA .= (2i)−1(M − M†) and {Ak, Bk} .= (∇Ak) ·
(∂kBk)−(∂kAk) ·(∇Bk) (∇ ≡ ∂X); one has {Ak, Bk} =
0. (This new definition of a brace-delimited bracket
should cause no confusion in context.) The first two
terms of Eq. (6a) define Ωk = Ωk + Ω′

k, where

Ωi
k[P ] .= −Sij

kD̂P j, (12a)

Ω′i
k[Q] .= (Sik

jD̂Q
j︸ ︷︷ ︸

Â

)( gkk︸︷︷︸
B̂

), (12b)

and D̂
.= k · ẑ × ∇. We note the appearance of the

operators Â and B̂, which do not commute because D̂ =
D̂k[∇], ĝ = ĝk[∇], and Q = Q

k
(X). The contribution

from {A; B} = ∇A ·∂kĝ adds to a part of {Ω′; C} to give
a term proportional to ∂k(gklC

lj) = ∂kCk
j . One obtains

∂TC
ij = 2(Ωi

kC
kj)A

− ({Ωi
k[P ], Ckj}+ {Ω′ik[Q], Ck

j})H . (13)

The Ω′ term is small and will be neglected. The resulting
modulated Eq. (13) conserves the same Casimirs as do
the primitive dynamics. That is expected since Casimir
invariance is independent of the Hamiltonian.

To determine Ė , we lower the second index of Eq. (13)
with gj and take the trace. We write the resulting
equation in conservative form by passing gj through the
Poisson brackets, obtaining correction terms2 that com-
bine to an antisymmetric form that vanishes under the
trace. Next, we bar the equation and vary Ė according
to Eq. (9). On the right-hand side, we calculate δC/δP
from the steady-state form of Eq. (13) (the omitted linear
and nonlinear DW dynamics contribute a term θ̂−1 : C,
where the fourth-rank tensor θ̂ generalizes the triad in-
teraction time of scalar Markovian theory2). The final
result is (Σij)H = H(ij)(Σij), where H(ij) denotes the
Hermitian part with respect to the indices i and j, and

Σij
q = −

∑
k
d2Sir

k[(∂ + 2i)grs]

× θ̂ks
ksH

(ks)[Sjk
l(∂ + 2i)C ls

k ], (14)

d
.= ẑ · q× k, and ∂ .= q · ∂k. The terms proportional to

2i are associated with off-diagonal correlations and van-
ish in the scalar case. Note that whereas only ΣH is

determined from the energy theorem, WKB analysis of
G itself6 can be shown to lead directly to Eq. (14). The
form (14) is not unique; for each Casimir Z(n), one ele-
ment of Cij could be eliminated in favor of Z(n).

As a nontrivial application, we first consider electro-
static ITG fluctuations at small but nonzero τ .16 The
relevant gyrofluid equations were well studied in Refs. 9–
11, although their Hamiltonian structure has not been
previously examined. Let ψ = (N, T )T , where N and T
are the fluctuations in ion gyrocenter density and temper-
ature, respectively. For τ � 1, the gyrokinetic-Poisson
equation is N = αϕ − (1 + 1

2τα)ω − 1
2τ∇2

⊥T , where
ω
.= ∇2

⊥ϕ and α projects onto the DW subspace. Let

H[ψ] =
1
2
(N + 1

2 τ∇2
⊥T )K̂(N + 1

2 τ∇2
⊥T ), (15)

where K̂ .= (1+ 1
2 τ∇2

⊥)[α−(1+ 1
2τα)∇2

⊥]−1 [note K̂(N+
1
2
τ∇2

⊥T ) = ϕ + 1
2
τω]. The metric tensor and structure

matrix are

ĝ =
(

1 b̂

b̂ b̂2

)
K̂, S

.=
(
N T
T N + T

)
, (16a,b)

where b̂ .= 1
2 τ∇2

⊥. S satisfies Sij
k = Sik

j. One obtains

Ṅ = −[ϕ+ 1
2
τω,N ]− 1

2
τ [ω + 1

2
τ∇2

⊥ω, T ], (17a)

Ṫ = −[ϕ+ 1
2τω, T ]− 1

2 τ [ω + 1
2 τ∇2

⊥ω,N + T ]. (17b)

This system conserves H = ϕ′2 + |∇ϕ|2− 1
2τω

2− 1
4 τ

2ω′2

and the Casimir Z .= 1
2 (N2 + T 2). If all terms of

O(τ ) are neglected, Eq. (17a) reduces to the generalized
Hasegawa–Mima equation.2 In that limit, it can be read-
ily verified that formula (14) reduces to the result of KK
for that case; this is a nontrivial cross-check.

The underlined terms are O(τ2); if only they are ne-
glected, the resulting system is the symmetrical one stud-
ied in Refs. 9–11.17 As in Ref. 5, one might attempt
to calculate the O(τ ) correction to γq. However, there
is a fundamental reason why this is impossible within
this (and all similar) formalism: the O(τ ) changes in C

and θ̂ due to self-consistency are unknown. If one were
to asystematically evaluate those functions at τ = 0,
one would proceed as follows. The dominant terms in
formula (14) are γq ≈ −g

NN
(q)ΣNN

q , where ΣNN
q ≈

−1
2

∑
k d

2(∂gNN θ̂
NN
r ∂CNN + 2∂gNT θ̂

NT
r ∂CNT

r ), r de-
notes the real part, and θ̂ is taken to be diagonal.
(This assumption may be problematical; see the remarks
in the next paragraph.) Dependence on τ occurs in
several places: (i) g

NN
(q) ≈ q−2; (ii) the derivatives

−∂gNN (k) ≈ 2(q · k)(1 + τ )[1 + (1 + 1
2
τ )k2]−2 and

−∂gNT (k) ≈ τ (q ·k)(1+k2)−2. The term in CNN varies
as 1 + τ for k2 � 1, while the term in CNT varies as
τ sgn(q̂ · ∂k ReCNT /q̂ · ∂kC

NN). Thus the sign of the
cross-correlation is crucial. In linear theory, one finds
T = {ωT∗ /[(1 + k2)ωr] − 1}N , where ω∗ is the diamag-
netic frequency and ωr is the linear mode frequency. This
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is typically negative. However, we must stress again that
the ultimate τ dependence cannot be ascertained without
a self-consistent theory of the steady-state C and θ̂.

Next we consider collisional DW fluctuations at small
plasma pressure β. With ψ = (ω, n, A)T , where n is the
electron density and A is the parallel component of the
vector potential, the nonlinear parts of the equations of
Ref. 12 are generated byH[ψ] = 1

2

∫
dx [ω(−∇−2)ω+n2+

βA(−∇2)A] and S =

ω n A
n n A
A A 0

 . Casimir invariants are

Z(1) .= 1
2 (n− ω)2 and Z(2) .= 1

2A
2. As a nontrivial cross-

check, it can be shown that in the collisionless and β → 0
limit one recovers the generalized HM result of KK. This
limit is subtle, as formula (14) with diagonal θ̂ presents
the result in terms of ∂Cωω, not ∂Z(1). The resolution
is that θ̂ cannot be considered to be diagonal because
of the rigid constraint engendered by adiabatic DW re-
sponse; rather, it reduces to the product of a scalar in-
teraction time and a singular nondiagonal tensor. For
fixed C and θ̂, a formula for the O(β) correction to the
electrostatic γq can be written straightforwardly, aided
by the facts that ĝ is diagonal and ∂gnn = 0. However,
the expression is somewhat lengthy and is furthermore
not unique because of the Casimir constraints; we have
been unable to ascertain a definite sign. In any event, the
true β dependence cannot be determined without a self-
consistent analysis of the steady-state turbulence. Fur-
ther details and discussion will be presented elsewhere.13

In summary, the convective-cell growth rate γq is fun-
damentally a nonlinear quantity;2 linear theory enters
only indirectly through the values of the triad interac-

tion time θ̂ and the wave-number spectrum Ck. Thus
it is useful to base the choice of dependent variables on
the nonlinear structure of the primitive equations. Ac-
cordingly, we have developed the theory of γq in terms
of a Hamiltonian functional description in noncanonical
coordinates. A Hamiltonian of generalized kinetic-energy
form specified by the covariant tensor ĝ together with a
certain Lie-Poisson bracket is sufficient to reproduce var-
ious popular Eulerian gyrofluid systems. The dynamics
evolve on the symplectic leaf specified by the Casimir
invariant(s) Z. ĝ serves as a metric tensor to lower con-
travariant indices. The tensor wave kinetic equation has
a natural covariant form. γq is given in terms of the gij ,
the structure constants Sij

k, and the spectral functions
Cij according to formulas (10b) and (14). The general
expression reduces to the known result for generalized
Hasegawa–Mima dynamics,2,3 and more elaborate cou-
pled systems can also be analyzed systematically.

Important questions remain unanswered. The formal-
ism does not determine θ̂ or the nonlinear phase relations
in steady-state turbulence. Toroidal geometry requires
additional discussion. If no separation between long and
short scales can be made, use of the wave kinetic equa-
tion must be replaced by more general statistical closure
theory.2 It is hoped that the asymptotic limit studied
here will serve as a useful benchmark for such analysis.

We are grateful for eludicating discussions with
G. Hammett (on the nature of gyrofluid closures),
P. Morrison (on Hamiltonian bracket formalisms), and
B. Scott (on the importance of symmetrically conserva-
tive fluid systems). This work was supported by U. S.
Dept. of Energy Contract No. DE-AC02-76-CHO-3073.
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However, the Ṗ equation itself is inconsistent.]
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