24 research outputs found

    Data-driven modeling of long temperature time-series to capture the thermal behavior of bridges for SHM purposes

    Get PDF
    Bridges experience complex heat propagation phenomena that are governed by external thermal loads, such as solar radiation and air convection, as well as internal factors, such as thermal inertia and geometrical properties of the various components. This dynamics produces internal temperature distributions which cause changes in some measurable structural responses that often surpass those produced by any other load acting on the structure or by the insurgence or growth of damage. This article advocates the use of regression models that are capable of capturing the dynamics buried within long sequences of temperature measurements and of relating that to some measured structural response, such as strain as in the test structure used in this study. Two such models are proposed, namely the multiple linear regression (MLR) and a deep learning (DL) method based on one-dimensional causal dilated convolutional neural networks, and their ability to predict strain is evaluated in terms of the coefficient of determination R 2. Simple linear regression (LR), which only uses a single temperature reading to predict the structural response, is also tested and used as a benchmark. It is shown that both MLR and the DL method largely outperform LR, with the DL method providing the best results overall, though at a higher computational cost. These findings confirm the need to consider the evolution of temperature if one wishes to setup a temperature-based data-driven strategy for the SHM of large structures such as bridges, an example of which is given and discussed towards the end of the article.</p

    Performance of signal processing techniques for anomaly detection using a temperature-based measurement interpretation approach

    Get PDF
    This is the final version. Available on open access from Springer via the DOI in this record.This study investigates the effectiveness of four signal processing techniques in supporting a data-driven strategy for anomaly detection that relies on correlations between measurements of bridge response and temperature distributions. The strategy builds upon the regression-based thermal response prediction methodology which was developed by the authors to accurately predict thermal response from distributed temperature measurements. The four techniques that are investigated as part of the strategy are moving fast Fourier transform, moving principal component analysis, signal subtraction method and cointegration method. The techniques are compared on measurement time-histories from a laboratory structure and a footbridge at the National Physical Laboratory. Results demonstrate that anomaly events can be detected successfully depending on the magnitude and duration of the event and the choice of an appropriate anomaly detection technique

    A multiple camera position approach for accurate displacement measurement using computer vision

    Get PDF
    This is the final version. Available on open access from Springer via the DOI in this recordEngineers can today capture high-resolution video recordings of bridge movements during routine visual inspections using modern smartphones and compile a historical archive over time. However the recordings are likely to be from cameras of different makes, placed at varying positions. Previous studies have not explored whether such recordings can support monitoring of bridge condition. This is the focus of this study. It evaluates the feasibility of an imaging approach for condition assessment that is independent of the camera positions used for individual recordings. The proposed approach relies on the premise that spatial relationships between multiple structural features remain the same even when images of the structure are taken from different angles or camera positions. It employs coordinate transformation techniques, which use the identified features, to compute structural displacements from images. The proposed approach is applied to a laboratory beam, subject to static loading under various damage scenarios and recorded using multiple cameras in a range of positions. Results show that the response computed from the recordings are accurate, with 5% discrepancy in computed displacements relative to the mean. The approach is also demonstrated on a full-scale pedestrian suspension bridge. Vertical bridge movements, induced by forced excitations, are collected with two smartphones and an action camera. Analysis of the images shows that the measurement discrepancy in computed displacements is 6%.Sustainable Futures, Nottingham Trent Universit

    Data-driven approaches for measurement interpretation: analysing integrated thermal and vehicular response in bridge structural health monitoring

    Get PDF
    A comprehensive evaluation of a structure's performance based on quasi-static measurements requires consideration of the response due to all applied loads. For the majority of short- and medium-span bridges, temperature and vehicular loads are the main drivers of structural deformations. This paper therefore evaluates the following two hypotheses: (i) knowledge of loads and their positions, and temperature distributions can be used to accurately predict structural response, and (ii) the difference between predicted and measured response at various sensor locations can form the basis of anomaly detection techniques. It introduces a measurement interpretation approach that merges the regression-based thermal response prediction methodology that was proposed previously by the authors with a novel methodology for predicting traffic-induced response. The approach first removes both environmentally (temperature) and operationally (traffic) induced trends from measurement time series of structural response. The resulting time series is then analysed using anomaly detection techniques. Experimental data collected from a laboratory truss is used for the evaluation of this approach. Results show that (i) traffic-induced response is recognized once thermal effects are removed, and (ii) information of the location and weight of a vehicle can be used to generate regression models that predict traffic-induced response. As a whole, the approach is shown to be capable of detecting damage by analysing measurements that include both vehicular and thermal response

    Energy Investigation Framework: understanding buildings from an energy perspective view.

    Get PDF
    According to the United Nations Global Status Report 2017, buildings and construction account for 36% of the global energy use and 39% of energy related carbon dioxide emissions [1]. A prudent design and accurate construction of energy efficient buildings are mandatory to reduce both global energy consumption and carbon dioxide emissions. The desired outcome can be achieved by (i) increasing the construction of low energy buildings, which are designed to sustain desired indoor temperature with a minimal energy input, (ii) and improving the energy performance of existing buildings. Some buildings underperform by gaining or losing more heat than needed. This study introduces a framework for investigating building energy performance. Thermography investigation, building modelling, characterization of thermal bridges and future prediction for overheating are encapsulated in the proposed framework. A sport changing facility, which was designed as a low energy building, serves as a demonstrator for the application of the framework. The energy investigation framework revealed that the facility is underperforming. According to the building model, the main reason for the poor building performance is thermal bridging (presence of steel members), which increases gas consumption and wall heat-loss by 18% and 11%, respectively. Other contributors to heat lose/gain are cracks in the building envelop, weak mortar joints and uninsulated hot water pipes. Furthermore, the future temperature data, which is input to the building model, suggests that the entire facility is under the risk of overheating
    corecore