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Abstract
This study investigates the effectiveness of four signal processing techniques in supporting a data-driven strategy for anomaly 
detection that relies on correlations between measurements of bridge response and temperature distributions. The strategy 
builds upon the regression-based thermal response prediction methodology which was developed by the authors to accurately 
predict thermal response from distributed temperature measurements. The four techniques that are investigated as part of the 
strategy are moving fast Fourier transform, moving principal component analysis, signal subtraction method and cointegra-
tion method. The techniques are compared on measurement time histories from a laboratory structure and a footbridge at 
the National Physical Laboratory. Results demonstrate that anomaly events can be detected successfully depending on the 
magnitude and duration of the event and the choice of an appropriate anomaly detection technique.

Keywords  Structural health monitoring (SHM) · Signal analysis · Signal processing · Damage detection · Long term 
monitoring · Thermal effects

1  Introduction

Effective data interpretation approaches [1, 2] are key to sup-
port decision-making based on long-term bridge monitoring 
systems [3–5]. Such systems typically collect dynamic [6, 
7] or quasi-static response measurements [8, 9], alongside 
environmental data such as temperature, humidity and wind. 
The collected response measurements, while including the 
effects of live loads and weather-related loads such as wind, 
are mostly dominated by the effects of daily and seasonal 
variations in ambient temperature [7–11]. Bridges have also 
been observed to have non-linear temperature gradients that 
often cause thermal stresses comparable to those due to live 
loads [12]. Therefore, reliable techniques for interpreting 
measurements must include appropriate ways of incorporat-
ing temperature effects.

The techniques used for measurement interpreta-
tion are usually referred to as structural identification 

(St-Id) techniques due to their use of system identification 
approaches [13, 14]. St-Id aims to develop numerical models 
that are capable of accurately predicting structural behav-
iour using measurements from structural health monitoring 
(SHM) [13]. Historically, in the context of aerospace and 
mechanical systems, St-Id techniques have been applied 
primarily for damage identification. Conceptually, damage 
identification can be considered to be part of a broad meas-
urement interpretation paradigm that has the following five 
steps, where the first four are part of St-Id [15] and the last 
step is for the residual life prediction of a structure [16]:

•	 Detection. Detect anomalous behaviour (damage) of a 
structure.

•	 Localisation. Indicate the location of the damage.
•	 Classification. Determine the type of damage.
•	 Assessment. Assess the extent and severity of the dam-

age.
•	 Prediction. Determine the fitness of the bridge and give 

a prognosis of its residual life.

In this paper, the focus is on the first two steps: detection 
and localisation of damage.

St-Id techniques can be broadly classified into two cate-
gories: (1) data driven and (2) model based [17]. The former 
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class of techniques requires minimal structural knowledge 
and is better suited for continuous monitoring applications 
since they avoid behaviour models (e.g. finite element 
models), which are often difficult to generate and require 
significant computational resources. Data-driven methods 
generally employ statistical techniques to analyse the con-
tinuously collected measurements [18–21]. The goal is often 
to detect sudden or gradual changes in structural behaviour 
from shifts and drifts in measurement (or signal) patterns. 
However, these methods may not fully explain the reason for 
the observed change in behaviour.

Data-driven methods rely on the statistical relationships 
between distributed measurements. Posenato et al. [22] com-
pared several signal processing techniques on a set of strain 
time histories and showed that moving principal compo-
nent analysis (MPCA) offers the most promise for anomaly 
detection, which indicates a change in the performance of 
the structure or damage. However, MPCA failed to detect 
changes in signals unless damage is either close to the sen-
sor location or is of very high severity [23]. A key reason 
cited for the lack of sensitivity of MPCA was the effects of 
ambient temperature variations on structural response. This 
was verified by [24] who showed on a laboratory structure 
that anomaly detectability improves significantly when ther-
mal effects have been purged from measurements. They also 
put forward a temperature-based measurement interpreta-
tion (TB-MI) approach [25] a coupled data-driven anomaly 
detection strategy that adopts the principles of temperature-
based SHM [26]. The first step in this approach is to predict 
thermal response of a bridge from distributed temperature 
measurements. Then, prediction error signals, which are 
computed from the difference between predicted and meas-
ured response, are analysed for anomalies using anomaly 
detection techniques.

While the basic concept in the TB-MI approach was illus-
trated in [25], there has not been an in-depth investigation 
into the performance of various signal processing methods 
within this concept. This is the specific novelty of this paper, 
which focuses on the performance of four anomaly detection 
techniques within the TB-MI approach: (1) cointegration, 
(2) signal subtraction method, (3) MPCA and (4) moving 
fast Fourier transform are chosen. These techniques have 
been chosen for the superior performance they have dem-
onstrated in previous studies [22, 23, 25, 27] on anomaly 
detection from long-term measurements. The capability of 
these techniques to detect sudden and gradual changes in 
structural performance (i.e. damage) is evaluated and com-
pared using measurements from a laboratory truss and a con-
crete footbridge. The performance of the TB-MI approach is 
also compared with direct application of anomaly detection 
techniques on response measurements.

2 � Data‑driven measurement interpretation 
approach

The TB-MI approach consists of two parts. The first part is 
the regression-based thermal response prediction (RBTRP) 
methodology. This methodology utilises distributed tem-
perature and response measurements to generate regression 
models that can predict thermal response from distributed 
temperature measurements [28]. The latter part analyses the 
prediction errors for anomaly events and locations.

2.1 � Regression‑based thermal response prediction 
(RBTRP) methodology

The RBTRP methodology aims to produce reliable regres-
sion models which predict bridge response from distributed 
temperature measurements. The methodology has a model 
generation phase and a model application phase. In the 
model generation phase, models for accurately predicting 
thermal response are generated. The main steps in this phase 
are:

1.	 Selection of a reference set of measurements. The 
selected (input) measurements are used to train regres-
sion models.

2.	 Data pre-processing. Measurements are cleansed from 
outliers using inter-quartile range technique, smoothed 
with a moving average filter and down-sampled to 
ensure input data quality for model training.

3.	 Dimensionality reduction of the measurement dataset 
using principal component analysis (PCA). Temperature 
measurements are transformed to the principal compo-
nent space, and only those principal components that 
are sufficient to explain 99.9% of the variance in the 
temperature measurements are chosen as input to the 
regression models.

4.	 Generation and evaluation of statistical models for iden-
tifying the most accurate and robust models.

In the model application phase, statistical models identi-
fied in the model generation phase are employed to predict 
real-time response from distributed temperature measure-
ments. Readers seeking more information on the RBTRP 
methodology are advised to refer to [28].

2.2 � Anomaly detection

Traditional anomaly detection techniques analyse pat-
terns derived from new measurements against patterns 
observed during a reference period for deviations from 
normal (baseline) behaviour. However, in this research, 
prediction error (PE) signals which are generated by the 
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RBTRP methodology are analysed using signal processing 
techniques to detect anomalies which correspond to anom-
alous structural behaviour or structural damage. The refer-
ence period for anomaly detection is kept the same as the 
period used for training regression models in the RBTRP 
methodology. Patterns in the PE signals in the reference 
period are assumed to represent the baseline conditions of 
the structure. An anomaly is said to be detected when the 
deviations in measurement patterns, which are evaluated 
in relation to patterns present during the reference period, 
exceed the confidence interval that is determined based on 
the characteristics of the baseline patterns.

A schematic diagram of the anomaly detection process 
is shown in Fig. 1. Similar to the RBTRP methodology, 
there are two phases in the anomaly detection technique. 
Initially, baseline conditions of a structure are identified 
in the form of patterns derived from the PE signals cor-
responding to the reference period. This phase is repre-
sented as baseline condition identification. Subsequently, 
PEs computed from newly collected measurements and 
predicted response are examined for anomaly events. This 
phase is denoted as the real-time anomaly detection.

The identification of baseline conditions phase includes 
the following steps:

1.	 Pre-processing of PE signals. PE signals are pre-pro-
cessed for outliers and noise. Outliers are removed using 
inter-quartile range technique. Signal noise is reduced 
using moving average filters.

2.	 Selection of an anomaly detection technique. A suite of 
signal processing techniques is employed to interpret 
PE signals. The techniques can be classified under the 
following two categories:

	(a) 	Univariate signal analysis. Signal processing 
techniques such as moving fast Fourier transform 
(MFFT) [23] analyse the PE signals for each sensor 
individually. These techniques are useful to detect 
faulty sensors or damage that is very local to a sen-
sor.

	(b) 	Multivariate signal analysis. These techniques 
enable integrated analysis of time series of several 

parameters. These are useful for data interpretation 
in large, complex structures that have vast numbers 
of sensors. In such structures, clustering sensors into 
groups according to their correlations or other met-
rics, and then analysing these clusters for changes in 
correlations can reveal anomalies and indicate their 
locations [29, 30].

3.	 Selection of a training set. A training set is specified for 
the chosen anomaly detection technique. The PE val-
ues in the training set are used to derive key features as 
described in the next step.

4.	 Generation of statistical features. All signal processing 
techniques used for anomaly detection in this research 
rely fundamentally on statistical features, which define 
the patterns in the PE signals. In this step, features that 
are tracked by the chosen signal processing technique 
are evaluated from the values for the PE signal in the 
training set.

5.	 Determination of the confidence interval. This step 
involves evaluating the confidence interval or threshold 
bounds for the statistical features identified in the previ-
ous step. The thresholds are determined probabilistically 
based on the values for the remaining statistical features 
in the reference set.

The real-time anomaly detection phase denotes the appli-
cation of signal processing techniques for real-time anomaly 
detection. It includes the following steps:

1.	 Pre-processing of PE values. PE values are pre-pro-
cessed as in the identification of baseline conditions 
phase.

2.	 Computation of statistical features. This step involves 
computing values for statistical features used in the 
selected anomaly detection technique from PE values 
evaluated for newly collected measurements.

3.	 Classification of new measurements. This step evaluates 
if patterns derived from PEs are within the establish con-
fidence interval, and based on this evaluation, classifies 
new measurements as representative of either anomalous 
or normal structural behaviour.

Fig. 1   Flowchart of anomaly detection process
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Figure 2 graphically illustrates the classification step, 
which is described above as the last step in the real-time 
anomaly detection phase, on an arbitrary PE signal. An 
anomaly is likely to indicate damage when the feature 
tracked by the anomaly detection technique departs irre-
versibly outside of the confidence interval. The confidence 
interval for the statistical features can be defined assuming 
the parameters of the features are Gaussian variables. For 
example, they can be specified as [μ − nσ, μ + nσ], where μ 
and σ are the mean and standard deviation of the values for 
the signal derived using the selected technique during the 
reference period, and n is an integer value greater than zero. 
Defining the confidence interval closer to the mean value of 
the signal, i.e. by choosing a small value for n, increases the 
likelihood of false positives and false negatives. In contrast, 
larger threshold bounds, i.e. by choosing large values for n, 
imply that only anomaly events of high severity are detected 
[27]. Commonly used values for n are 3 and 6, which corre-
spond to confidence levels of 99.73% and 99.99% for signals 
representing a Gaussian process [22, 30, 31]. Therefore, the 
specification of threshold bounds, and by implication, selec-
tion of the training set has to be done prudently based on the 
statistical data and the nature of the signal.

The classification step, as illustrated in Fig. 2 and dis-
cussed above, is structured in a simplistic manner, although, 
in reality, it can be more complex and complicated. This step 
can be related to visualising results for bridge operators, and 
therefore, a careful consideration has to be given to how the 
results from anomaly detection are presented. For example, 
the classification step can be probabilistic in nature and sug-
gest the likelihood that new measurements are representative 
of anomalous structural behaviour. However, this research 
focuses only on the application of anomaly detection tech-
niques; human–computer interaction and results visualisa-
tion are considered outside the scope of this work.

2.3 � Signal processing techniques

In the following sections, four signal processing techniques, 
which are grouped as univariate and multivariate signal 
analysis techniques in this research, are described. Two of 
the techniques—moving fast Fourier transform and signal 
subtraction method, have been introduced by the authors and 
have shown promise for analysing SHM data [23, 25]. The 
other two techniques—moving principal component analysis 
and cointegration, have been chosen out of several investi-
gated in previous research due to the superior performance 
they have demonstrated for damage detection from long-
term quasi-static response time histories [22, 27].

2.3.1 � Univariate signal analysis

These signal processing techniques analyse each PE signal 
individually, and are, hence, appropriate for detecting faulty 
sensors or anomalies in univariate signals. The interpretation 
of a single signal also requires less computational effort than 
integrated analysis of multiple PE signals.

Moving fast Fourier transform (MFFT). Fourier transforms 
are generally used to transform signals from time domain to 
frequency domain by determining their frequency content, 
and also the relative magnitudes of the various frequencies 
[32]. MFFT is the fast Fourier transform of a moving win-
dow of data points from a time series, which in the case of 
this research is the PE signal. When applying MFFT for 
anomaly detection, the frequency content of the PE signal is 
tracked to identify changes in structural performance. Spe-
cifically, the amplitude of the lowest frequency component 
is considered [23]. An example of the application of MFFT 
is illustrated conceptually in Fig. 3 using an arbitrary PE 
signal.

2.3.2 � Multivariate signal analysis

The measured response at a particular location of a bridge is 
often correlated with other response measurements taken in 
its vicinity [33]. Multivariate signal processing techniques 
take advantage of spatial correlations in signals. They can 
be superior to univariate signal analysis techniques when 
evaluating strongly correlated signals such as from SHM. 
Multivariate signal analysis techniques are capable of resolv-
ing such environmental and operational variations by using 
spatial correlations. This research employs three multi-
variate signal processing techniques: (1) signal subtraction 
method, (2) moving principal component analysis and (3) 
cointegration.

Fig. 2   Determination of baseline conditions
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Signal subtraction method (SSM). SSM is a technique pro-
posed in [25], in which two PE signals are linearly combined 
to generate a new signal, which is then analysed for anoma-
lies. Mathematically, it is applied as follows:

where Tkl is the new signal resulting from the subtrac-
tion process. Δyk and Δyl are values of the PE signals cor-
responding to sensors k and l, respectively. rk and rl are 
scaling factors for the two PE signals. These are equal to 
the range of signal values in the training period, i.e. the dif-
ference between the maximum and minimum values in the 
training period. wk and wl are weights specified according 
to the accuracies of the respective sensor and its correspond-
ing model for thermal response prediction. In this study, 
the hypothesis is that measurements from all elements are 
equally important. Therefore, weights of all PE signals are 
set equal to 1.

Moving principal component analysis (MPCA). MPCA was 
originally proposed for anomaly detection by Posenato et al. 
[34]. Its anomaly detection capabilities were shown to be 
superior in comparison to a number of other techniques such 
as ARIMA and wavelets [22]. MPCA is fundamentally an 
extension of PCA, which is a statistical technique to reduce 
the dimensionality of large datasets [35]. PCA involves find-
ing a set of ordered orthonormal vectors referred to as princi-
pal components such that a few vectors explain nearly all the 
variability in the datasets. Application of MPCA to a cluster 
of time series essentially involves the iterative application 
of PCA over arrays of data obtained from windows moving 
incrementally over a cluster of time series. The moving win-
dow concept is the same as for MFFT (see Fig. 3); however, 
MPCA is applied simultaneously on multiple signals.

(1)Tkl =

(

wk

rk

)

Δyk −

(

wl

rl

)

Δyl,

In this study, MPCA is applied to a cluster of PE signals. 
Changes to the principal components indicate changes in the 
correlations between the PE signals and, hence, can imply 
the onset of anomalous structural behaviour or damage. For 
structures that are monitored with a vast number of sensors, 
the process of clustering PE signals is a crucial step, and can 
affect significantly the performance of anomaly detection. 
Posenato et al. [34] in their investigation on using MPCA to 
analyse response measurements suggested a simple heuris-
tic that uses the correlations between measurements from 
various sensors to arrive at the number and composition of 
clusters. The idea is to cluster measurement time series that 
are strongly correlated, and the corresponding sensors can 
usually be identified using engineering judgement.

Cointegration. The cointegration technique utilises the sta-
tistical properties of cointegrated signals for anomaly detec-
tion. Measurement time series of bridge response (signals) 
follows daily and seasonal temperature trends. Such time 
series can be classified as non-stationary processes. A non-
stationary signal is said to be integrated to an order d , if a 
process of taking differences over the time series repeated d 
times leads to a stationary signal. In mathematical notation, 
the order of integration of a signal is often denoted by I(d) . 
When considering a cluster of signals, the cluster is said to 
be cointegrated if there exists a linear combination of the 
component variables (measurements) that are stationary. The 
resulting stationary signals are referred to as cointegrated 
signals. This technique, initially proposed and used in the 
field of econometrics [36], has been introduced for SHM by 
Cross et al. [27]. It has been shown to be useful for purging 
quasi-static effects in measurements, and has been demon-
strated on a few benchmark problems, and on measurements 
from the NPL Footbridge [37]. Applications of cointegration 
for damage detection in long-term measurements have also 
been expanded to nonlinear approaches [38], multiresolution 

Fig. 3   Application of the MFFT 
on a PE signal
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approaches [39] and regime-switching methods [30]. Math-
ematics behind cointegration is not detailed in this paper. 
Interested readers are referred to [27].

3 � Case studies

A laboratory truss and the National Physical Laboratory 
(NPL) Footbridge are selected to assess the anomaly detec-
tion capabilities of the proposed measurement interpretation 
approach.

3.1 � Laboratory truss

A 3-m-long aluminium laboratory truss, which was manu-
factured at the University of Exeter, UK, and has served as a 
test-bed for studies by Kromanis and Kripakaran [24, 25], is 
considered in this study (see Fig. 4). The truss is built of alu-
minium sections. Top and bottom chords and outer diagonals 
are composed of two channel section forming an “I” section. 
Other elements are flat bars. All elements are joined with 
six bolts. The truss is connected to the concrete foundation 
with both supports being pinned. Three thermal heaters are 
installed 0.5 m above and 0.3 m away from the truss. Heat-
ers are periodically turned on and off to create additional 
temperature loads to already existing ambient temperature.

The truss is monitored with 31 thermocouples and 10 
strain gauges (see Fig. 5). Measurements are collected at 
10-s intervals for a period of 13 days. Continuous time histo-
ries of temperatures and strains are plotted in Fig. 6. Damage 
is created by removing bolts and releasing the right support 
of the truss. All events are listed in Table 1.

3.2 � NPL footbridge

The NPL footbridge was located on the premises of the 
National Physical Laboratory in Teddington, UK. The foot-
bridge, which had been in service for more than 40 years, 
was moved from its original location in 2008 and setup as 
a SHM demonstrator (see Fig. 7). The deck of the bridge is 
20-m long and it is supported on two “A” shaped columns 

standing 10.5  m apart (see Fig.  8). The footbridge is 
equipped with a wide range of sensing units [40]. A series of 
experimental activities including load tests and strengthen-
ing procedures have been carried out on the footbridge on a 
relatively regular basis. The activities and their times, which 
are pertinent to the duration of data used in this study, are 
listed in Table 2. The table also provides the notation that are 
used to refer to the various events when analysing the results.

In this study, tilt measurements from eight electro-
level tilt sensors and temperatures from the thermistors in 
ten vibrating-wire arc-weldable strain gauges are used to 
demonstrate the measurement interpretation approach, spe-
cifically, anomaly detection. The tilt sensors have resolu-
tion of 5.2 × 10–3 mm/m. The resolution of the thermistors 
is ± 0.01 °C. The locations of these sensors are indicated 
in Fig. 8. Since strain gauges are placed at the bottom of 
the handrails and not directly on the deck, measured tem-
peratures are unlikely to represent the temperatures at the 
locations where the tilt measurements are collected particu-
larly given the distinct thermal conductivity characteristics 
of the materials of the metal handrail and the concrete deck. 
Therefore, predicting the response of this footbridge from 
the measured temperatures is a challenging task.

3.2.1 � Measurement time histories

Data collected from nearly two and a half years of moni-
toring of the footbridge are selected. Over the course of 
monitoring, measurements have generally been collected 
at a rate of one measurement per minute but the rate has 
also occasionally been reduced to one measurement per 
hour. There are also periods when data collection was 
interrupted for several days. Maintaining a consistent 
measurement frequency is, however, crucial to identify-
ing patterns in the data. Computational requirements can 
also be reduced by eliminating excess data. Portions of 
the original dataset where one measurement is taken every 
minute is, therefore, down-sampled to create a new dataset 
resembling a measurement frequency of one measurement Fig. 4   A photograph of the truss

Fig. 5   A sketch of the truss showing its principal dimensions, bound-
ary conditions, location of sensors (S—strain gauge, i = 1, 2, …, 10), 
damaged joints (J—joint, i = 1, 2, 3) and heaters
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every 5 min. Durations corresponding to no measurement 
periods are removed. The periods when measurements 
were taken at a rate of one measurement every hour com-
prise a small part of the entire measurement set (< 2%) 
and are not up-sampled further. This procedure has been 
shown to be appropriate for generating regression models 
for thermal response prediction from the NPL footbridge 
data [28].

Time-histories of temperatures and strains are pre-pro-
cessed. Temperatures measured with sensor TEMP-1 are 
plotted in Fig. 9. These show a typical sinusoidal trend indi-
cating seasonal temperature variations, but when examined 
closer (see Fig. 9 (right)) also have smaller sinusoidal cycles 
from daily temperature variations. Tilts measured by sensors 
TL-5, TL-6, TL-7 and TL-8 are plotted in Fig. 10. Plots of 
measurements from sensors TL-5 and TL-6 show that tilts 
of the deck, while being correlated with temperatures during 
the summer times, do not strictly follow temperature vari-
ations during the winter periods. Instead, the magnitude of 
the tilts shows little variation during winters (from October 
to March). This phenomenon is possibly due to

Fig. 6   Time-histories of temperatures at the bottom chord (top) and strains (bottom) measured with S-3 with zoomed-in views for a simulated 
daily cycle (right) around the time of damage event #1. Numbers in the boxes correspond to events listed in Table 1

Table 1   The lists of events for 
the truss

a All connections are repaired, i.e. bolts are put back
b Right support is released

Event 1 2 3 4 5 6

Affected joints J-1 J-1 J-1, J-2 J-1, J-2, J-3 a b

Number (#) of removed 
bolts

3 5 8 11 0 0

Fig. 7   A photograph of the NPL footbridge
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•	 the limited solar radiation during the winter periods 
resulting in small thermal gradients across the deck 
cross-section and therefore causing minimal longitudinal 
bending of the structure

•	 or the fact that the bottom part of the “T”-shaped deck is 
an arch and it does not bend inwards; hence, measured 
tilts are minimal.

Sensors TL-7 and TL-8 measure tilts of the “A” shaped 
columns about the y-axis. Measurements from TL-7 show 
sinusoidal trends resembling both daily and seasonal tem-
perature variations. On the other hand, measurements from 

TL-8, while having some sinusoidal trends, increase in 
magnitude over the course of the monitoring. This may be 
due to either a sensor malfunction or from ongoing settle-
ment of the foundation supporting this column.

3.2.2 � Event histories

During the monitoring, the footbridge was exposed to a 
variety of loading and cut-and-repair tests. Details of such 
events that may have changed the performance of the foot-
bridge are listed in Table 2. While temperature variations 
explain patterns in tilt measurements (with some excep-
tions, such as from TL-8), a closer examination, particu-
larly with knowledge of the activities on the bridge, can 
help to identify the events. For example, measurements 
collected with TL‑5 are shown up close in Fig. 11. The 
effects of events #2 and #3 can be identified from Fig. 10 
by looking at measurements at the corresponding time-
frame. The two drops in tilt measurements due to these 
events are indicated by circles in Fig. 11. Both events #2 
and #3 are static load tests. In these tests (see Table 2), a 
load was applied at the end of the left cantilever portion of 
the footbridge. Identifying such events from measurement 
time histories is a difficult task, especially without having 
a priori knowledge of times and nature of the activities.

Fig. 8   A sketch of the NPL 
footbridge. TL-i (i = 1, 2, …, 
8) and TEMP-j (j = 1, 2, …, 
10) indicate the locations of 
tilt sensors and thermistors, 
respectively

Table 2   The list of events for the NPL footbridge

Event # Date Activities

1 March 24, 2009 Static tests—filling and emptying 
water tanks which are attached to 
the left cantilever

2 June 29–30, 2009
3 August 1–3, 2009
4 June 30–July 2, 2010 Static tests and scaffolding activities
5 October 18, 2010 Cut in the left cantilever and static 

tests
6 November 1, 2010 Cantilever repaired
7 April 28, 2011 Cut in the left cantilever
8 June 27, 2011 Rebar cut

Fig. 9   Temperatures measured 
by TEMP-1 over the selected 
monitoring period (left) and one 
day (right)
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4 � Results

This research focuses on the anomaly detection effectiveness 
of the four techniques described in Sect. 2.3. The emphasis 
is on the detection of anomaly events, which can also indi-
cated damages to the structure, rather than the time required 
to detect them. In this paper, thermal response predictions 
(the RBTRP methodology) are not explicitly scrutinised for 
the laboratory truss (readers are advised to refer to [25]), 
but an elaborate insight into thermal response prediction is 
provided for the NPL footbridge. PE signals for both struc-
tures are presented. They are obtained using regression mod-
els offering the highest prediction accuracies. In addition, 
response signals alone are interpreted using the selected 
signal processing techniques.

4.1 � Laboratory truss

4.1.1 � Temperature‑based measurement interpretation 
approach

A dataset encompassing ½ of measurements before the 
truss was damaged forms the reference dataset. This 

dataset is selected to generate and evaluate regression 
models under the RBTRP methodology. Selected PE sig-
nals (from sensor locations close to the damage) are shown 
in Fig. 12. PE signals related to a particular sensor location 
are named as PE {sensor name}. When visually inspecting 
PE signals corresponding to sensor location in the vicinity 
of damages (see Fig. 12), the following can be observed:

•	 PE S-3 (i) shifts at event #4, (ii) drifts after event #5 and 
(iii) increases the amplitude (resulting from simulated 
daily temperature cycles) after event #6;

•	 PE S-4 (i) drifts slightly after event #1. The drift stops 
after event #4 when the signal jumps, (ii) drifts after 
event #5 and (iii) increases the amplitude after event #6;

•	 PE S-7 exhibits no visual anomalies except slight change 
of the signal amplitude before and after event #1, and 
after event #6.

MFFT. MFFT processes a moving window of values from 
a PE signal. The selected length of the window is 1/3 of the 
length of the reference period. The rest of the measurements 
in the reference period are used to determine the confidence 
interval for the feature used for anomaly detection. The 
threshold for the confidence interval is set as +6� , where 
� is the standard deviation during the reference period. A 

Fig. 10   Time histories of 
selected tilt measurements
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negative threshold is meaningless as the MFFT features 
cannot be negative. MFFT interpretations of PE S-2, PE 
S-3, PE S-4 and PE S-7, which are representatives of typical 
signal trends, are plotted in Fig. 13. From hereon these are 
referred to as MFFT {sensor name}, e.g., MFFT S-2 refers 
to a MFFT interpretation of PE S-2.

MFFT S-1 and MFFT S-2 follow the same trend. MFFT 
S-2 can be observed to exceed marginally the threshold after 
events #1, #3 and #5, but it return to the confidence interval 
after events #2, #3 and #4. MFFT S-3 departs permanently 
outside the confidence interval after event #4. Events #1 
and #2 are close to the sensor S-4 and these are detected 
by MFFT S-4. The signal exceeds the confidence interval 
soon after event #1. MFFT S-5 and MFFT S-10 follow the 

same pattern as MFFT S-7. From MFFT S-7, damage can be 
detected clearly soon after event #4, when bolts from a joint 
close to sensor S-7 are removed. MFFT signals computed 
from the other PE signals show little or no changes from 
their normal trends.

MPCA. PE signals are well correlated; therefore, they can 
be analysed as a single dataset using multivariate anomaly 
detection techniques. Initially, MPCA is employed on a set 
comprising all PE signals. The signal eigenvalues are set 
to 0. The trend of a MPCA signal is expected to change 
significantly with a damage. Therefore, a single confidence 
interval is drawn for all eigenvector signals. Average � 
and � values of all signals during the reference period 

Fig. 12   PE S-3, PE S-4 and PE 
S-7 signals [25]. Numbers in 
the boxes correspond to events 
listed in Table 1

Fig. 13   MFFT S-2, MFFT 
S-3, MFFT S-4 and MFFT S-7 
signals
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are calculated. Thresholds for the confidence interval are 
set to ±6� [31]. Figure 14a shows the plot of eigenvec-
tor time histories evaluated from PE S-1, PE S-2, PE S-3 
and PE S-4. A change in signal trends is noticeable soon 
after event #4. The component of eigenvector signal corre-
sponding to sensor S-3 increases, while those correspond-
ing to other sensors drop.

MPCA is next evaluated on different sensor clusters to 
check if anomalous behaviour can still be detected. PE S-3, 
which is derived from the sensor location next to the most 
severely damaged joint J-1, is excluded from the new data-
set. Two clusters of PE signals are formed. One set com-
prises PE S-1, PE S-2, PE S-4 and PE S-5, and the other 
comprises PE S-6, PE S-7, PE S-8, PE S-9 and PE S-10. 
These correspond to sensors on the top and bottom chords, 
respectively. The two clusters are analysed with MPCA 
and evaluated eigenvectors are plotted in Fig. 14b and c, 
respectively. A change in signal trends can be noticed after 
event #4. When boundary conditions are changed (event 
#6), eigenvector signals change their trend either immedi-
ately or closely after the event. Therefore, the conclusion 

is that only events #4 and #6 are confidentially detected 
by MPCA when PE S-3 is included and excluded from the 
input set.

Cointegration. Cointegrated signals are computed from the 
PE signals using the process described in Sect. 2.3.2. The 
cointegrated signal that is ranked first is the most likely to 
detect anomalies, and only these are used to illustrate the 
technique. A cointegrated signal is initially generated for 
all PE signals (see Fig. 15 (top)). Thresholds for anomaly 
detection are specified as ±3� [30]. The cointegrated signal 
shifts noticeably at event #1, when it permanently exceeds 
the upper threshold, and event #2. The sensitivity of the 
cointegration technique to detecting structural changes is 
illustrated in Fig. 15 (bottom) which shows cointegrated 
residuals computed from a cluster of all PE signals exclud-
ing PE S-3 and PE S-4. The cointegrated signal, while not 
as suggestive of anomaly events as in the case including 
PE S-3 and PE S-4, is still capable of detecting the majority 
of events. The signal drifts out of the confidence interval 
after event #2, and again exceeds the upper threshold after 

Fig. 14   Time series of the first 
eigenvectors computed with 
MPCA from PE signals: a 
shows eigenvectors representing 
S-1 to S-4 which are derived 
using all PE signals; b plots 
eigenvectors related to S-1, S-2, 
S-4 and S-5 and c plots S-6 
to S-10, these are computed 
considering all but PE S-3
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event #4. The choice of the confidence interval is important. 
With ±3� confidence interval cointegrated signal periodi-
cally exceeds the confidence interval. However, if the inter-
val is increased ±6� , the signal would remain within the 
confidence bounds for periods when it marginally exceeds 
±3� limits.

SSM. SSM is used to examine all possible subtraction sce-
narios. The number of sensors is 10; hence, 45 combinations 
of subtracted signals are created. Subtracted signals derived 
from combinations of those PE signals corresponding to the 
sensors located away from damage exhibit no or negligible 
deviations from their baseline patterns. Therefore anomaly 
detection is demonstrated using only a few subtracted signals 
that are generated from PE signals of sensors close to the 
damaged joints. Figure 16 displays four subtracted signals 
which reflect the structural behaviour of the truss.

Each signal refers to a combination of two signals, e.g., 
subtracted signal TS3S4 refers to a combination of PE S-3 
and PE S-4 (see Eq. 1). Combinations, which include PE 
S-3 such as TS3S4, indicate a sudden change at event #4. 
Subtracted signals, which include PE S-4 such as TS4S5 and 
TS4S8, depart gradually from the confidence interval after 
each subsequent event. Subtracted signals corresponding to 
a combination of sensors on elements of the truss that are 
not spatially close to the location of damage also diverge 
from their respective baseline conditions. This can be seen 
for TS4S8, which combines PE S-4 and PE S-8 corresponding 
to sensors S-4 and S-8. For event #3, joint J-2 is damaged. 
Combining PE S-8 and PE S-9, which correspond to sensors 
located away from the damaged joint, but on the top chord, 
event #3 is detectable from TS8S9 as it begins to depart out-
side the confidence interval.

In summary. events #4 and #6 can be detected with all pro-
posed multivariate anomaly detection methodologies. Events 
#1, #2 and #3 are not detected when PE signals are analysed 
using MPCA. These events, however, can be detected using 
cointegration and SSM techniques. Therefore, cointegration 
can detect changes in structural behaviour, and further inves-
tigations, for example with SSM or/and MFFT, can reveal 
the location of damage.

4.1.2 � Anomaly detection from response measurements

In this section, response measurements are directly ana-
lysed using the four anomaly detection techniques while 
completely ignoring temperature measurements, which is 
the approach that has been adopted by most researchers in 
SHM. The purpose is to investigate if there is an improve-
ment in anomaly detection performance by accounting for 
temperature effects as done in this research through using 
the RBTRP methodology.

The response measurements are analysed using the same 
values for parameters such as the reference period and the 
size of the moving window, as used for the interpretation of 
PE signals in Sect. 4.1.1. The training period and the length 
of the moving window are selected to be 1/3 of the refer-
ence period. The final 2/3 of measurements in the reference 
period is used to determine the confidence interval.

MFFT. MFFT signals computed from response (strain) 
measurements offer no support for detecting anomalous 
structural behaviour, and are, hence, not shown here.

MPCA. Events can be detected, when clusters of strain 
signals are analysed with MPCA. Eigenvectors, which are 
related to all signals except those of sensors S-5 and S-10, 

Fig. 16   Subtracted signals 
TS3S4, TS4S5, TS4S8 and TS4S9 
generated with SSM [25]



Journal of Civil Structural Health Monitoring	

123

change their pattern after event #6. Events #1, #2 and #3 
are not revealed with MPCA. Figure 17 illustrates an eigen-
vector signal related to sensor location S-3. Shortly after 
event #1, the eigenvector signal marginally and temporarily 
exceeds the confidence interval, which is set to ±3� . This 
change alone may be unreliable to state whether there is 
a change in structural performance. After event #4 (after 
measurement #80,000), the eigenvector signal exceeds the 
upper threshold and returns to the confidence interval after 
event #5 when the truss is repaired. The author hypothesises 
that the signal would have remained outside the confidence 
interval, if the joints were not repaired. Lastly, the change of 
boundary conditions (event #6) is also immediately reflected 
in the eigenvector signals of response measurements (see 
Fig. 17). These observations are similar to those made for 
MPCA results on PE signals (illustrated in Fig. 14).

Cointegration. The cointegrated signal of response measure-
ments is plotted in Fig. 18. The signal is stationary during 
the reference period and prior to event #1. The signal shifts 
immediately after events #1, #2, #4 and #6. These events 

have changed the performance of the structure and can 
clearly be identified in the cointegrated signal. The signal, 
however, does not return to its original pattern shown during 
the reference period after the truss is repaired (event #5). 
Thus, applying cointegration directly on measured response 
can indicate anomaly events. However, the reliability of 
anomaly detection is better when analysing PE signals after 
using the RBTRP methodology (see Fig. 15) since the shifts 
from anomaly events are much more pronounced and there-
fore easier to identify.

SSM. Subtracted signals can indicate events #4 and #6. Sub-
tracted signal TS3S4 computed from response measured by 
sensors S-3 and S-4 that are located on the bottom chord 
shift abruptly after event #4 (Fig. 19). All subtracted signals 
are capable of indicating event #6 by showing an abrupt 
shift, such as can be observed in TS4S5, when boundary con-
ditions are changed (event #6). In contrast, subtracted signals 
computed from PE signals are able to detect most of the 
events with a higher degree of confidence.

Fig. 17   Time series of the first 
eigenvectors related to sen-
sor S-3 computed with MPCA 
from all strain measurements for 
scenario X

Fig. 18   Cointegrated signal 
of all strain measurements for 
scenario X

Fig. 19   Subtracted signals TS3S4 
and TS4S5 generated with SSM 
from strain measurements
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4.1.3 � Summary

Table  3 summarises the results from the TB-MI and 
response-only approaches for the four selected anomaly 
detection techniques. A traffic light visualisation approach 
is chosen. Green colour indicates that there is a definitive 
evidence of a change in the signal detecting an anomaly 
event; yellow suggests that the evidence is semi-definitive; 
and red indicates that the event is not detectible. If the dam-
age location is also detected, the event field has a ‘yes’ in 
it. An example of a case where there is definitive evidence 
of damage and a clear indication of its location is found in 
Fig. 13 where signal MFFT S-4 exceeds the damage indicat-
ing threshold. Cases with semi-definitive evidence of dam-
age include MFFT S-3 in Fig. 13, and TS3S4 and TS4S5 in 
Fig. 16 after event #3, where signals are close to the limit of 
the confidence interval. Identifying damage location with 
multi-variate techniques is difficult when signals are not split 
into clusters, therefore damage locations are not detected. 
Overall, the TB-MI approach provides better damage detec-
tion and localisation than the response-only approach.

4.2 � NPL footbridge

4.2.1 � Thermal response predictions

The implementation of the RBTRP methodology for the 
generation of regression models for thermal response pre-
diction of the NPL footbridge is briefly discussed here. 
Detailed information can be found in the authors’ previous 
work [28]. The model generation can be a computationally 
intensive task when analysing large datasets. Therefore, the 
first step is to find the optimal range of input parameters to 
the model training using a down-sampled dataset from the 
reference period. The reference period should encompass 
as much of the anticipated variability in measurements as 
possible, e.g. one seasonal cycle. Measurements from the 

first year of monitoring, which constitute a total of 94,000 
measurements, are selected.

A sampling frequency of 6.5 × 10–6 Hz is selected to 
identify the range of desirable input parameters to the 
regression models. The two parameters are the thermal 
inertia parameter j and the number of principal compo-
nents (PCs). The input to the regression models is com-
posed of both current ( Di ) and former temperature ( Di−j ) 
measurements that have been transformed into PC space, 
where i refers to the most recent measurement and j to a 
previous measurement set collected j time-steps before i 
[28]. As there are ten temperature sensors on the bridge, 
the number of PCs range from 1 to 10. The first half of the 
PCs is sufficient to achieve good response predictions [25]. 
Support vector regression is chosen for the model genera-
tion. Mean PEs for regression models are plotted versus 
the number of PCs and the parameter j for sensors TL-1 
and TL-4 in Fig. 20. The desired values of the two param-
eters are defined from these plots. Then, model training is 
repeated with a larger set of training data than in the first 
step using the number of PCs and the parameter j that are 
found to give the lowest PEs.

Reasonably accurate regression models are computed 
using the available information, which contains imperfec-
tions in the dataset such as the lack of a reference period 
free of anomaly events. Resulting PE signals are shown in 
Fig. 21. Table 4 provides the statistics of the PEs for all sen-
sor locations. PEs are expressed in terms of the root mean 
square error (RMSE) and the percentage of the range of 
tilts measured during the reference period. Overall, the PEs 
are close to 10% or smaller. As structural behaviour may 
have been altered after events listed in Table 2 and only 
limited knowledge of temperature distribution is available 
from measurements, the generated regression models are 
satisfactory.

Table 3   Summary of anomaly 
detection results

Anomaly detection level: italic indicate definitive, roman indicate semi-definitive and bold indicate not 
detectible
Damage location detected: yes, no, not applicable (N/A)

Interpretation approach Anomaly detection 
technique

Event

#1 #2 #3 #4 #5 #6

TB-MI MFFT Yes Yes No Yes N/A N/A
MPCA No No No No N/A N/A
Cointegration No No No No N/A N/A
SSM Yes Yes Yes Yes N/A N/A

Response only MFFT No No No No N/A N/A
MPCA No No No No N/A N/A
Cointegration No No No No N/A N/A
SSM No No No Yes N/A N/A
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4.2.2 � Anomaly detection

PE signals are first visually examined for patterns and any 
imperfections. Of all the signals, PE TL-8 alone shows a 

different pattern. Measurements from sensor TL-8 do not 
resemble typical seasonal temperature patterns (see Fig. 10). 
In fact, the measurements show two noticeable drifts that 
commence at the following times:

Fig. 20   Tilt prediction error (mm/m) versus the number of PCs and thermal inertia parameter j for prediction models computed for sensors TL-1 
(left) and TL-4 (right)

Fig. 21   Prediction error (PE) 
signals for all sensor locations. 
Numbers in boxes represent 
events listed in Table 2
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•	 the beginning of winter 2010 and lasting until spring 
2010;

•	 shortly after event #4.

Consequently, PE TL-8 is also exhibiting a similar pat-
tern, and also has high values due to the large prediction 
errors, particularly after event #4 (Fig. 21).

A few of the events can be identified directly from the PE 
signals due to prior knowledge of the event history. Spikes 
at events #2 and #3 are discernible in PE TL-1, PE TL-4 
and PE TL-5. However, in general, all the events cannot 
be identified by visually examining the PE signals. The PE 
signals are, therefore, processed for anomaly events using 
MFFT, MPCA, cointegration and SSM.

PE TL-1 drifts slightly from the beginning of the moni-
toring until event #1. Such signal behaviour is not observed 
in PE TL-6 (sensor TL-6 is located on the other cantilever of 
the footbridge). A drift in PE TL-7 is discernible after event 
#1. This drift lasts for several months and the signal stabi-
lises at the end of the reference period. This can be deter-
mined only after the PE signals are analysed for anomalies.

MFFT. The length of the moving window is set to 4 months, 
which is 1/3 of the length of the reference period. The later 

2/3 of the measurements in the reference period are used to 
derive the confidence interval. Each MFFT signal is different 
and no common trends are noticeable. Some MFFT signals 
temporarily exceed the confidence interval, the others stay 
within the specified limits. Plots of MFFT TL-3 and MFFT 
TL-8 are shown in Fig. 22. MFFT TL-3 departs the confi-
dence interval after event #4. However, MFFT TL-8 exceeds 
the confidence interval soon after the end of the reference 
period, before February 2010. During this period, which is 
between events #3 and #4, no activity affecting the perfor-
mance of the footbridge took place.

MPCA. PE signals of all tilt sensors are used as input to 
MPCA. Initially, the length of the moving window is set 
to be the same as for MFFT, i.e. 4 months. No anomaly 
events are revealed in eigenvector signals (Fig. 23 (top)). 
However, many of the events are indicated by spikes in PE 
signals as discussed earlier (see Fig. 10). The length of the 
moving window is, therefore, gradually reduced to inves-
tigate if these events can be detected from analysis of PE 
signals using shorter lengths for the moving windows. The 
plot of the component from the first eigenvector signal corre-
sponding to sensor TL-1 computed using a moving window 
length of 30 days is also shown in Fig. 23 (bottom). The 
eigenvector values jump immediately after events #1, #2, 
#3, #4 and #8. Events #5, #6 and #7 are not detected. These 
events may have had little effect on the overall structural 
performance. Also, the eigenvector signal jumps not at event 
#8 but slightly after. This takes place on July 7, 2011. On 
this day, static load tests were carried out, which may have 
amplified the response due to the permanent damage created 
during event #8.

Cointegration. All PE signals are analysed using cointegra-
tion. The cointegrated signal is plotted in Fig. 24. The signal 
departs from the confidence interval after event #4. This 
closely reflects the trend of PE TL-8, which may indicate 
that the event happened close to sensor TL-8. However, 
the cointegrated signal cannot offer support in detecting 

Table 4   Tilt prediction accuracy for the reference period

Sensor name The range of tilts for 
the model training 
(mm/m)

RMSE (mm/m) RMSE (%)

TL-1 3.27 0.353 10.8%
TL-2 0.91 0.165 18.3%
TL-3 0.55 0.047 14.5%
TL-4 0.95 0.079 4.9%
TL-5 1.12 0.058 5.1%
TL-6 4.00 0.292 7.3%
TL-7 0.63 0.086 13.7%
TL-8 0.36 0.032 8.8%

Fig. 22   MFFT TL-3 and MFFT 
TL-8
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the location of the events. All other events appear to create 
small drifts in the cointegrated signal. However, none of the 
events other than event #4 are reliably detected using the 
cointegrated signal. This is in agreement with a previous 
study by Worden et al. [37], where they demonstrated that 
anomalous events from the NPL Footbridge can be detected 
when analysing all response measurements using the coin-
tegration approach.

SSM. The interpretation of PE signals with SSM provides 
results similar to those obtained using MPCA and coin-
tegration. Subtracted signals, which are derived using PE 
TL-8, exceed the confidence interval soon after event #4. 
As an example, TTL1TL8 is plotted in Fig. 25. It resembles 
the cointegrated signal shown in Fig. 24. In addition to 

detecting event #4, these results also indicate that the event 
must have occurred close to TL-8. Subtracted signals, gen-
erated from combinations including PE TL-4 and PE TL-5 
have shifts right after at events #2, #3 and #4. However, 
the shifts due to these events, which have short time-
scales, can be noticed only when the signals are examined 
closely as illustrated using TTL1TL5 in Fig. 26. The results 
also indicate that events #2, #3 and #4 must have occurred 
near sensors TL-4 and TL-5. 

4.3 � Discussion

±3� confidence intervals are more sensitive to changes in 
damage sensitive features than ±6� intervals. ±3� intervals 
are appropriate when analysing signals which are fairly 

Fig. 23   Time series of the first 
eigenvectors related to TL-1 
computed with MPCA from 
all PEs with. The length of the 
moving window is four months 
and 30 days for the top and bot-
tom plots, respectively

Fig. 24   Cointegrated signal 
generated from all PE signals

Fig. 25   TTL1TL8 generated with 
SSM
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stationary in nature such as cointegrated residuals (see 
Fig. 15) and when inspecting signals for short anomaly peri-
ods (see Fig. 26). As shown in the laboratory truss example, 
the analysed signal deviates further away from the confi-
dence interval when the severity of damage aggravates.

The case study of the laboratory truss demonstrates that a 
single method does not detect all damage events. However, 
often there is at least one method that detects each damage 
event. Multivariate signal analyses are useful for detection of 
damage, however, in order to locate damage, signal clusters 
have to be created and analysed. Univariate signal analyses, 
on the other hand, are good for suggesting damage location; 
however, they may also be sensitive to changes in signal 
that do not indicate anomalies and thus raise false alarms. 
Therefore combining results from a range of signal process-
ing techniques has the potential to significantly increase the 
confidence in anomaly detection. The results from all meth-
ods can be combined to increase the reliability of decisions 
and reduce false positives. This is a topic for future study 
and an example is demonstrated in the next paragraph.

A combination of two anomaly detection methods is 
observed to increase the damage detectability [31]. For 
example, the MFFT method is used to analyse TS3S4 (see 
Fig. 27) from the laboratory truss. The new signal exceeds 
slightly +6� threshold during the period when the truss is 

not damage. This, however, is not discernible in the plot due 
to the large range of the signal after the damage. After dam-
aging joint J-1 (event #1), a significant change is discernible 
in the signal trend. Continuous signal departures away from 
the confidence interval are observed after event #1, #2 and 4. 
These are events when damage is made close to sensor loca-
tions S-3 and S-4. The signal becomes stationary after event 
#3 when joint J-2 is damaged. This joint is on the top chord.

While the TB-MI approach has shown promising results, 
further investigation into anomaly classification is required 
to scale it up for practical applications. Anomaly detection 
is currently based on certain metrics exceeding pre-defined 
thresholds. However, to avoid false positives, these thresh-
olds may have to be flexible to account for long-term shifts 
in response due to expected benign changes in material 
behaviour such as from creep.

Lastly, the current study has focused primarily on tem-
perature-induced response measurements. The structural 
response to other forms of loading such as wind and vehi-
cle may also be treated in a similar manner. Knowledge of 
wind and vehicle loading can enable the prediction of related 
response, which upon removal from measured response can 
improve significantly anomaly detection. This is a natural 
next step to the work presented in this paper.

Fig. 26   TTL1TL5 generated with 
SSM. Plot at top shows the 
signal for the full measurement 
history, while those on the bot-
tom are closer views near events 
#2, #3 and #4

Fig. 27   MFFT interpretation of 
T
S3S4

 signal



Journal of Civil Structural Health Monitoring	

123

5 � Conclusions

Four anomaly detection techniques are compared with 
respect to their performance within the TB-MI approach and 
on response measurements only using measurements from 
a laboratory truss and a full-scale footbridge. The results 
show that anomaly detection is not easy. The application 
of multiple anomaly detection techniques is necessary to 
determine each type of event (damage). The following con-
clusions are drawn:

•	 The TB-MI approach provides better anomaly detection 
and localisation results than the response-only analysis. 
However, the analysis of response only does not require 
distributed temperature measurements, which are manda-
tory for the application of the TB-MI approach.

•	 Cointegration and signal subtraction method are more 
robust in detecting anomalies than moving principal 
component analysis and moving fast Fourier transform. 
Cointegration can only be used to detect the occurrence 
of an anomaly event while SSM can help reveal the loca-
tion of damage.

•	 Using moving windows of short lengths in MPCA can 
detect temporary anomaly events such as abnormal short-
term loadings. These events can also be detected while 
having a closer look at signals generated with SSM. 
Thus, an ensemble of methodologies may be required 
for faster, and more robust and reliable detection of both 
temporary anomalous behaviour (e.g. previously unseen 
loading) and permanent damage.

•	 The global structural behaviour of a bridge changes if an 
element critical to the load path is damaged. The TB-MI 
approach can detect the global damage, if its extent is 
significant, even using signals from sensors located away 
from the location of damage.

•	 The selection of an appropriate confidence interval is 
challenging. ±6� confidence intervals may not reveal 
short-term anomaly events, but ±3� intervals may result 
in false negatives. The truss experiment demonstrates 
that interpreted signals change significantly after dam-
ages are introduced. Combined methods such as SSM 
and MFFT can be considered to improve the performance 
of the damage detection techniques.
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