3 research outputs found

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time, and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space. While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes, vast areas of the tropics remain understudied. In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity, but it remains among the least known forests in America and is often underrepresented in biodiversity databases. To worsen this situation, human-induced modifications may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge, it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Diversity and seasonality of horse flies (Diptera: Tabanidae) in Uruguay.

    No full text
    Horse flies (Diptera: Tabanidae) cause direct and indirect losses in livestock production and are important vectors of pathogens. The aim of this study was to determine the diversity and seasonality of horse fly species at an experimental farm in Tacuarembó and the diversity of species in differentdepartments of Uruguay. For 20 months, systematic collections were performed in two different environments at the experimental farm using Nzi and Malaise traps. In addition, nonsystematic collections were performed at farms located in the departments of Paysandú, Tacuarembó and Colonia.A total of 3,666 horse flies were collected, and 16 species were identified. These species included three species that had not been previously recorded in Uruguay, namely, Dasybasis ornatissima (Brèthes), Dasybasis missionum (Macquart), and Tabanus aff. platensis Brèthes, and a species that had not beenpreviously taxonomically described (Tabanus sp.1). Among the systematically captured samples, the most abundant species were Tabanus campestris Brèthes, T. aff. platensis and D. missionum, representing 77.6% of the collected specimens. The horse fly season in Tacuarembó started in September and ended in May. No horse flies were caught during winter. Variations in the prevalences of species in the different departments were observed, which indicates the need for new sampling efforts

    Diversity patterns of hawkmoths (Lepidoptera: Sphingidae) in the canopy of an ombrophilous forest in Central Amazon, Brazil

    No full text
    Sphingidae attracted to light were systematically collected in an Amazonian forest canopy. Sampling occurred at a height of 34 m in an upland primary rainforest plateau in the Cueiras River basin, located within the Experimental Station of Tropical Silviculture, Manaus municipality, Amazonas, Brazil. The hawkmoths were collected using a vertical white sheet illuminated by a 250 W mixed mercury light and a 20 W black-light (BLB) fluorescent tube. Monthly collections were carried out from January to December 2004, during three nights of lunar transition from third quarter moon to new moon between 6 p.m. and 6 a.m. We sampled 1748 specimens, represented by 1485 males and 263 females, belonging to 52 species and 21 genera. Xylophanes comprised the highest number of species (seven), followed by Erinnyis, with six species. The most abundant species were Pseudosphinx tetrio (169 specimens), Pachylia darceta (162), Erinnyis ello ello (154), Isognathus excelsior (151) and Callionima parce (139). The species accumulation curve showed that the species richness tended to stabilize by the eighth month. We also observed that species composition altered significantly throughout the night period. All presented hawkmoth records are new for the canopy in the central Amazon.Foram realizadas coletas sistemáticas de Sphingidae no dossel de floresta ombrófila densa na Amazônia central utilizando-se armadilha luminosa. As coletas ocorreram em uma floresta primária de terra firme, na bacia do Rio Cuieiras, a 34 m de altura na torre da Estação Experimental de Silvicultura Tropical, Manaus, Amazonas, Brasil. Foi utilizado um lençol branco iluminado com uma lâmpada de luz mista de mercúrio e uma lâmpada de luz negra UV-BLB. As mariposas foram coletadas mensalmente durante o ano de 2004, em três noites consecutivas de lua minguante e/ou lua nova, sempre das 18:00 às 06:00h. Foram coletados 1748 espécimes, dos quais 769, por serem comuns, foram identificados, marcados e soltos. Foram obtidos 1485 machos e 263 fêmeas, pertencentes a 21 gêneros e 52 espécies. Xylophanes foi representado por sete espécies, seguido por Erinnyis com seis. As espécies mais abundantes foram Pseudosphinx tetrio (169 espécimes), Pachylia darceta (162), Erinnyis ello ello (154), Isognathus excelsior (151) e Callionima parce (139). A curva de acumulação de espécie mostrou que em torno do oitavo mês de coleta, a riqueza de espécies tendeu a estabilizar. Foi possível observar ainda que a composição de esfingídeos mudou significativamente ao longo da noite. Todos os registros são novos para o dossel de floresta na Amazônia central
    corecore