122 research outputs found

    What is the best way to diagnose polycystic ovarian syndrome?

    Get PDF
    Polycystic ovarian syndrome (PCOS) is diagnosed for women of childbearing age presenting with 2 of the following: 1)oligo- or anovulatory menstrual irregularities, 2) evidence of hyperandrogenism in the absence of secondary cause; 3) enlarged ovaries with multiple small follicular cysts on transvaginal ultrasound (strength of recommendation [SOR]: C, based on expert opinion). Depending on the clinical presentation, secondary causes should be excluded (SOR: C, expert opinion). While not among the diagnostic criteria, insulin resistance is common, and patients with PCOS should be evaluated for metabolic abnormalities, particularly hyperlipidemia and glucose intolerance or diabetes (SOR: B, based on prospective cohort studies)

    The influence of lexical and conceptual constraints on reading mixed-language sentences: Evidence from eye-fixation and naming times

    Get PDF
    In two experiments, we explored the degree to which sentence context effects operate at a lexical or conceptual level by examining the processing of mixed-language sentences by fluent Spanish-English bilinguals. In Experiment 1, subjects\u27 eye movements were monitored while they read English sentences in which sentence constraint, word frequency, and language of target word were manipulated. A frequency x constraint interaction was found when target words appeared in Spanish, but not in English. First fixation durations were longer for high-frequency Spanish words when these were embedded in high-constraint sentences than in low-constraint sentences. This result suggests that the conceptual restrictions produced by the sentence context were met, but that the lexical restrictions were not. The same result did not occur for low-frequency Spanish words, presumably because the slower access of low-frequency words provided more processing time for the resolution of this conflict. Similar results were found in Experiment 2 using rapid serial visual presentation when subjects named the target words aloud. It appears that sentence context effects are influenced by both semantic/conceptual and lexical information

    Characterization of extracellular polymeric substances (EPS) from periphyton using liquid chromatography-organic carbon detection-organic nitrogen detection (LC-OCD-OND)

    Get PDF
    A protocol was developed to extract, fractionate, and quantitatively analyze periphyton extracellular polymeric substances (EPS), which obtains both information on the molecular weight (M r) distribution and protein and polysaccharide content. The EPS were extracted from freshwater periphyton between July and December 2011. Organic carbon (OC) compounds from different EPS extracts were analyzed using liquid chromatography-organic carbon detection-organic nitrogen detection (LC-OCD-OND), and total protein and polysaccharide content were quantified. Four distinct OC fractions, on the basis of M r, were identified in all extracts, corresponding to high M r biopolymers (≄80-4kDa), degradation products of humic substances (M r not available), low M r acids (10-0.7kDa), and small amphiphilic/neutral compounds (3-0.5kDa). Low C/N ratios (4.3 ± 0.8) were calculated for the biopolymer fractions, which represented 16-38% of the measured dissolved organic carbon (DOC), indicating a significant presence of high M r proteins in the EPS. Protein and polysaccharide represented the two major components of EPS and, when combined, accounted for the measured DOC in extracts. Differences in specific OC fractions of EPS extracts over the course of the study could be quantified using this method. This study suggests that LC-OCD-OND is a new valuable tool in EPS characterization of periphyto

    Cytotoxicity screening of 23 engineered nanomaterials using a test matrix of ten cell lines and three different assays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Engineered nanomaterials display unique properties that may have impact on human health, and thus require a reliable evaluation of their potential toxicity. Here, we performed a standardized <it>in vitro </it>screening of 23 engineered nanomaterials. We thoroughly characterized the physicochemical properties of the nanomaterials and adapted three classical <it>in vitro </it>toxicity assays to eliminate nanomaterial interference. Nanomaterial toxicity was assessed in ten representative cell lines.</p> <p>Results</p> <p>Six nanomaterials induced oxidative cell stress while only a single nanomaterial reduced cellular metabolic activity and none of the particles affected cell viability. Results from heterogeneous and chemically identical particles suggested that surface chemistry, surface coating and chemical composition are likely determinants of nanomaterial toxicity. Individual cell lines differed significantly in their response, dependent on the particle type and the toxicity endpoint measured.</p> <p>Conclusion</p> <p><it>In vitro </it>toxicity of the analyzed engineered nanomaterials cannot be attributed to a defined physicochemical property. Therefore, the accurate identification of nanomaterial cytotoxicity requires a matrix based on a set of sensitive cell lines and <it>in vitro </it>assays measuring different cytotoxicity endpoints.</p

    Mixed messages from benthic microbial communities exposed to nanoparticulate and ionic silver: 3D structure picks up nano-specific effects, while EPS and traditional endpoints indicate a concentration-dependent impact of silver ions

    Get PDF
    Silver nanoparticles (AgNP) are currently defined as emerging pollutants in surface water ecosystems. Whether the toxic effects of AgNP towards freshwater organisms are fully explainable by the release of ionic silver (Ag+) has not been conclusively elucidated. Long-term effects to benthic microbial communities (periphyton) that provide essential functions in stream ecosystems are unknown. The effects of exposure of periphyton to 2 and 20 ÎŒg/L Ag+ (AgNO3) and AgNP (polyvinylpyrrolidone stabilised) were investigated in artificial indoor streams. The extracellular polymeric substances (EPS) and 3D biofilm structure, biomass, algae species, Ag concentrations in the water phase and bioassociated Ag were analysed. A strong decrease in total Ag was observed within 4 days. Bioassociated Ag was proportional to dissolved Ag indicating a rate limitation by diffusion across the diffusive boundary layer. Two micrograms per liter of AgNO3 or AgNP did not induce significant effects despite detectable bioassociation of Ag. The 20-ÎŒg/L AgNO3 affected green algae and diatom communities, biomass and the ratio of polysaccharides to proteins in EPS. The 20-ÎŒg/L AgNO3 and AgNP decreased biofilm volume to about 50 %, while the decrease of biomass was lower in 20 ÎŒg/L AgNP samples than the 20-ÎŒg/L AgNO3 indicating a compaction of the NP-exposed biofilms. Roughness coefficients were lower in 20 ÎŒg/L AgNP-treated samples. The more traditional endpoints (biomass and diversity) indicated silver ion concentration-dependent effects, while the newly introduced parameters (3D structure and EPS) indicated both silver ion concentration-dependent effects and effects related to the silver species applied

    Case Study: Predictive Fairness to Reduce Misdemeanor Recidivism Through Social Service Interventions

    Full text link
    The criminal justice system is currently ill-equipped to improve outcomes of individuals who cycle in and out of the system with a series of misdemeanor offenses. Often due to constraints of caseload and poor record linkage, prior interactions with an individual may not be considered when an individual comes back into the system, let alone in a proactive manner through the application of diversion programs. The Los Angeles City Attorney's Office recently created a new Recidivism Reduction and Drug Diversion unit (R2D2) tasked with reducing recidivism in this population. Here we describe a collaboration with this new unit as a case study for the incorporation of predictive equity into machine learning based decision making in a resource-constrained setting. The program seeks to improve outcomes by developing individually-tailored social service interventions (i.e., diversions, conditional plea agreements, stayed sentencing, or other favorable case disposition based on appropriate social service linkage rather than traditional sentencing methods) for individuals likely to experience subsequent interactions with the criminal justice system, a time and resource-intensive undertaking that necessitates an ability to focus resources on individuals most likely to be involved in a future case. Seeking to achieve both efficiency (through predictive accuracy) and equity (improving outcomes in traditionally under-served communities and working to mitigate existing disparities in criminal justice outcomes), we discuss the equity outcomes we seek to achieve, describe the corresponding choice of a metric for measuring predictive fairness in this context, and explore a set of options for balancing equity and efficiency when building and selecting machine learning models in an operational public policy setting.Comment: 12 pages, 4 figures, 1 algorithm. The definitive Version of Record will be published in the proceedings of the Conference on Fairness, Accountability, and Transparency (FAT* '20), January 27-30, 2020, Barcelona, Spai

    Interactions between microplastics and benthic biofilms in fluvial ecosystems: Knowledge gaps and future trends

    Get PDF
    Plastics, especially microplastics (<5 mm in length), are anthropogenic polymer particles that have been detected in almost all environments. Microplastics are extremely persistent pollutants and act as long-lasting reactive surfaces for additives, organic matter, and toxic substances. Biofilms are microbial assemblages that act as a sink for particulate matter, including microplastics. They are ubiquitous in freshwater ecosystems and provide key services that promote biodiversity and help sustain ecosystem function. Here, we provide a conceptual framework to describe the transient storage of microplastics in fluvial biofilm and develop hypotheses to help explain how microplastics and biofilms interact in fluvial ecosystems. We identify lines of future research that need to be addressed to better manage microplastics and biofilms, including how the sorption and desorption of environmental contaminants in microplastics affect biofilms and how microbial exchange between microplastics and the biofilm matrix affects biofilm characteristics like antibiotic resistance, speciation, biodiversity, species composition, and function. We also address the uptake mechanisms of microplastics by consumers and their propagation through the food web

    Influence of Microplastics on Microbial Structure, Function, and Mechanical Properties of Stream Periphyton

    Get PDF
    Este artĂ­culo contiene 17 pĂĄginas, 5 figuras, 4 tablas.Periphyton is a freshwater biofilm composed of prokaryotic and eukaryotic communities that occupy rocks and sediments, forming the base of the food web and playing a key role in nutrient cycling. Given the large surface that periphyton comprises, it may also act as a sink for a diverse range of man-made pollutants, including microplastics (MP). Here we investigated the effect of 1–4 ÎŒm and 63–75 ”m sized, spherical polyethylene MP with native and ultraviolet (UV)-weathered surface on developing natural stream periphyton communities over 28 days. In order to ensure proper particle exposure, we first tested MP suspension in water or in water containing either Tween 80, extracellular polymeric substances – EPS, fulvic acids, or protein. We found the extract of EPS from natural periphyton to be most suitable to create MP suspensions in preparation of exposure. Upon exposure, all tested types of MP were found to be associated with the periphyton, independent of their size and other properties. While biomass accrual and phenotypic community structure of the photoautotrophs remained unchanged, the prokaryotic and eukaryotic communities experienced a significant change in composition and relative abundances. Moreover, alpha diversity was affected in eukaryotes, but not in prokaryotes. The observed changes were more prominent in periphyton exposed to UV-treated as compared with native surface MP. Mechanical properties, as assessed by compression rheology, showed that MP-exposed periphyton had longer filamentous streamers, higher stiffness, lower force recovery and a higher viscoelasticity than control periphyton. Despite the observed structural and mechanical changes of periphyton, functional parameters (i.e., photosynthetic yield, respiration and nutrient uptake efficiencies) were not altered by MP, indicating the absence of MP toxicity, and suggesting functional redundancy in the communities. Together, our results provide further proof that periphyton is a sink for MP and demonstrate that MP can impact local microbial community composition and mechanical properties of the biofilms. Consequences of these findings might be a change in dislodgement behavior of periphyton, a propagation through the food chains and impacts on nutrient cycling and energy transfer. Hence, taking the omnipresence, high persistence and material and size diversity of MP in the aquatic environment into account, their ecological consequences need further investigation.The study was financially supported by the Velux foundation, project number 1039, Switzerland. Additional lab work was funded by Tailwind grant of Eawag Switzerland. Open access funding was provided by Eawag–Swiss Federal Institute of Aquatic Science And Technology.Peer reviewe
    • 

    corecore