1,971 research outputs found

    In situ N2O emissions are not mitigated by hippuric and benzoic acids under denitrifying conditions

    Get PDF
    This research was financially supported under the National Development Plan, through the Research Stimulus Fund, administered by the Department of Agriculture, Food and the Marine (Grant numbers RSF10/RD/SC/716 and 11S138).peer-reviewedRuminant urine patches deposited onto pasture are a significant source of greenhouse gas nitrous oxide (N2O) from livestock agriculture. Increasing food demand is predicted to lead to a rise in ruminant numbers globally, which, in turn will result in elevated levels of urine-derived N2O. Therefore mitigation strategies are urgently needed. Urine contains hippuric acid and together with one of its breakdown products, benzoic acid, has previously been linked to mitigating N2O emissions from urine patches in laboratory studies. However, the sole field study to date found no effect of hippuric and benzoic acid concentration on N2O emissions. Therefore the aim of this study was to investigate the in situ effect of these urine constituents on N2O emissions under conditions conducive to denitrification losses. Unadulterated bovine urine (0 mM of hippuric acid, U) was applied, as well as urine amended with either benzoic acid (96 mM, U + BA) or varying rates of hippuric acid (8 and 82 mM, U + HA1, U + HA2). Soil inorganic nitrogen (N) and N2O fluxes were monitored over a 66 day period. Urine application resulted in elevated N2O flux for 44 days. The largest N2O fluxes accounting for between 13% (U) and 26% (U + HA1) of total loss were observed on the day of urine application. Between 0.9 and 1.3% of urine-N was lost as N2O. Cumulative N2O loss from the control was 0.3 kg N2O–N ha− 1 compared with 11, 9, 12, and 10 kg N2O–N ha− 1 for the U, U + HA1, U + HA2, and U + BA treatments, respectively. Incremental increases in urine HA or increase in BA concentrations had no effect on N2O emissions. Although simulation of dietary manipulation to reduce N2O emissions through altering individual urine constituents appears to have no effect, there may be other manipulations such as reducing N content or inclusion of synthetic inhibitory products that warrant further investigation.Department of Agriculture, Food and the Marin

    Global modelling of H2 mixing ratios and isotopic compositions with the TM5 model

    Get PDF
    The isotopic composition of molecular hydrogen (H2) contains independent information for constraining the global H2 budget. To explore this, we have implemented hydrogen sources and sinks, including their isotopic composition, into the global chemistry transport model TM5. For the first time, a global model now includes a simplified but explicit isotope reaction scheme for the photochemical production of H2. We present a comparison of modelled results for the H2 mixing ratio and isotope composition with available measurements on the seasonal to inter annual time scales for the years 2001–2007. The base model results agree well with observations for H2 mixing ratios. For dD[H2], modelled values are slightly lower than measurements. A detailed sensitivity study is performed to identify the most important parameters for modelling the isotopic composition of H2. The results show that on the global scale, the discrepancy between model and measurements can be closed by adjusting the default values of the isotope effects in deposition, photochemistry and the stratosphere-troposphere exchange within the known range of uncertainty. However, the available isotope data do not provide sufficient information to uniquely constrain the global isotope budget. Therefore, additional studies focussing on the isotopic composition near the tropopause and on the isotope effects in the photochemistry and deposition are recommended

    The effect of renovation of long-term temperate grassland on N2O emissions and N leaching from contrasting soils

    Get PDF
    pre-printRenovation of long-term grassland is associated with a peak in soil organic N mineralisation which, coupled with diminished plant N uptake can lead to large gaseous and leaching N losses. This study reports on the effect of ploughing and subsequent N fertilisation on the N2O emissions and DON/NO3− leaching, and evaluates the impact of ploughing technique on the magnitude and profile of N losses. This study was carried out on isolated grassland lysimeters of three Irish soils representing contrasting drainage properties (well-drained Clonakilty, moderately-drained Elton and poorly-drained Rathangan). Lysimeters were manually ploughed simulating conventional (CT) and minimum tillage (MT) as two treatments. Renovation of grassland increased N2O flux to a maximum of 0.9 kg N2O–N ha− 1 from poorly-drained soil over four days after treatment. Although there was no difference between CT and MT in the post-ploughing period, the treatment influenced subsequent N2O after fertiliser applications. Fertilisation remained the major driver of N losses therefore reducing fertilisation rate post-planting to account for N mineralised through grassland renovation could reduce the losses in medium to longer term. Leaching was a significant loss pathway, with the cumulative drainage volume and N leached highly influenced by soil type. Overall, the total N losses (N2O + N leached) were lowest from poorly and moderately draining soil and highest for the well draining soil, reflecting the dominance of leaching on total N losses and the paramount importance of soil properties

    A consistent molecular hydrogen isotope chemistry scheme based on an independent bond approximation

    Get PDF
    The isotopic composition of molecular hydrogen (H<sub>2</sub>) produced by photochemical oxidation of methane (CH<sub>4</sub>) and Volatile Organic Compounds (VOCs) is a key quantity in the global isotope budget of (H<sub>2</sub>). The many individual reaction steps involved complicate its investigation. Here we present a simplified structure-activity approach to assign isotope effects to the individual elementary reaction steps in the oxidation sequence of CH<sub>4</sub> and some other VOCs. The approach builds on and extends the work by Gerst and Quay (2001) and Feilberg et al. (2007b). The description is generalized and allows the application, in principle, also to other compounds. The idea is that the C-H and C-D bonds – seen as reactive sites – have similar relative reaction probabilities in isotopically substituted, but otherwise identical molecules. The limitations of this approach are discussed for the reaction CH<sub>4</sub>+Cl. The same approach is applied to VOCs, which are important precursors of H<sub>2</sub> that need to be included into models. Unfortunately, quantitative information on VOC isotope effects and source isotope signatures is very limited and the isotope scheme at this time is limited to a strongly parameterized statistical approach, which neglects kinetic isotope effects. Using these concepts we implement a full hydrogen isotope scheme in a chemical box model and carry out a sensitivity study to identify those reaction steps and conditions that are most critical for the isotope composition of the final H<sub>2</sub> product. The reaction scheme is directly applicable in global chemistry models, which can thus include the isotope pathway of H<sub>2</sub> produced from CH<sub>4</sub> and VOCs in a consistent way

    Improving and disaggregating N2O emission factors for ruminant excreta on temperate pasture soils

    Get PDF
    pre-printCattle excreta deposited on grazed grasslands are a major source of the greenhouse gas (GHG) nitrous oxide (N2O). Currently, many countries use the IPCC default emission factor (EF) of 2% to estimate excreta-derived N2O emissions. However, emissions can vary greatly depending on the type of excreta (dung or urine), soil type and timing of application. Therefore three experiments were conducted to quantify excreta-derived N2O emissions and their associated EFs, and to assess the effect of soil type, season of application and type of excreta on the magnitude of losses. Cattle dung, urine and artificial urine treatments were applied in spring, summer and autumn to three temperate grassland sites with varying soil and weather conditions. Nitrous oxide emissions were measured from the three experiments over 12 months to generate annual N2O emission factors. The EFs from urine treated soil was greater (0.30–4.81% for real urine and 0.13–3.82% for synthetic urine) when compared with dung (− 0.02–1.48%) treatments. Nitrous oxide emissions were driven by environmental conditions and could be predicted by rainfall and temperature before, and soil moisture deficit after application; highlighting the potential for a decision support tool to reduce N2O emissions by modifying grazing management based on these parameters. Emission factors varied seasonally with the highest EFs in autumn and were also dependent on soil type, with the lowest EFs observed from well-drained and the highest from imperfectly drained soil. The EFs averaged 0.31 and 1.18% for cattle dung and urine, respectively, both of which were considerably lower than the IPCC default value of 2%. These results support both lowering and disaggregating EFs by excreta type.This research was financially supported under the National Development Plan, through the Research Stimulus Fund, administered by the Department of Agriculture, Food and the Marine (Grant numbers RSF10/RD/SC/716 and 11S138)

    Ozone exchange within and above an irrigated Californian orchard

    Get PDF
    In this study, the canopy effects on the vertical ozone exchange within and above Californian orchard are investigated. We examined the comprehensive dataset obtained from the Canopy Horizontal Array Turbulence Study (CHATS). CHATS typifies a rural central Californian site, with O3 mixing ratios of less than 60 ppb and moderate NOx mixing ratios. The CHATS campaign covered a complete irrigation cycle, with our analysis including periods before and after irrigation. Lower O3 mixing ratios were found following irrigation, together with increased wind speeds, decreased air temperatures and increased specific humidity. Friction velocity, sensible heat and gas fluxes above the canopy were estimated using variations on the flux-gradient method, including a method which accounts for the roughness sublayer (RSL). These methods were compared to fluxes derived from observed eddy diffusivities of heat and friction velocity. We found that the use of the RSL parameterization, which accounts for the canopy-induced turbulent mixing above the canopy, resulted in a stronger momentum, heat, and ozone exchange fluxes above this orchard, compared to the method which omits the RSL. This was quantified by the increased friction velocity, heat flux and ozone deposition flux of up to 12, 29, and 35% at 2.5 m above the canopy, respectively. Within the canopy, vertical fluxes, as derived from local gradients and eddy diffusivity of heat, were compared to fluxes calculated using the Lagrangian inverse theory. Both methods showed a presence of vertical flux divergence of friction velocity, heat and ozone, suggesting that turbulent mixing was inefficient in homogenizing the effects driven by local sources and sinks on vertical exchange of those quantities. This weak mixing within the canopy was also corroborated in the eddy diffusivities of friction velocity and heat, which were calculated directly from the observations. Finally, the influence of water stress on the O3 budget was examined by comparing the results prior and after the irrigation. Although the analysis is limited to the local conditions, our in situ measurements indicated differences in the O3 mixing ratio prior and after irrigation during CHATS. We attribute these O3 mixing ratio changes to enhanced biological emission of volatile organic compounds (VOCs), driven by water stress

    DEEM: Enabling microservices via DEvice edge markets

    Get PDF
    Native applications running over handheld devices have an irreplaceable role in users' daily activities. That said, recent studies show that users download on average zero new applications on monthly basis, which suggests that new apps can face discoverability issues. In this work, we aim for a web-based, download/installation-free access to native application features through microservices (μ Services)that are shared between user devices in a peer-to-peer (P2P)manner. Such a P2P approach is self-scalable and requires no investment for μ Service deployment, unlike mobile edge computing or Data Centre. We introduce DEEM, a DEvice Edge Market design that enables device-hosted μServices to end-users. In DEEM, μ Service-based markets act as rendezvous points between available μ Service instances and clients. DEEM ensures the i) assignment of instances to the users that value them the most, in terms of QoS gain, and ii) devices' income maximisation. Our evaluation on synthetic settings demonstrates DEEM's capability in exploiting the pool of device instances for improving the application QoS in terms of latency

    An evaluation of urine patch simulation methods for nitrous oxide emission measurement

    Get PDF
    peer-reviewedGlobal nitrous oxide (N2O) inventory estimates for pasture systems are refined based on measurements of N2O loss from simulated urine patches. A variety of methods are used for patch simulation but they frequently use a uniform wetted area (UWA), often smaller than a bovine urine patch. However, natural patches follow non-uniform infiltration patterns expanding naturally from a point of deposit with a non-wetted zone of influence. Using 2 litres of urine the UWA method was compared, using a 0·156 m2 collar, with a naturally expanding effective area (NEEA) method, using a 0·462 m2 collar under high (HL) and low (LL) N2O loss conditions. The method chosen affects urine nitrogen (N) loading to the soil. Under HL the UWA method induced a N2O-N loss of 280·6 mg/patch, significantly less than the 434·8 mg/patch loss for the NEEA method, for the same simulated urination. Under LL there was no method effect. Efforts should be made to employ patch simulation methods, which mimic natural deposits and can be achieved, at least in part, by: (a) Using a urine volume and N content similar to that of the animal of interest. (b) Allowing natural infiltration of the chosen urine volume to permit tapering towards the edges. (c) Measuring from the zone of influence in addition to the wetted area, i.e. the patch effective area

    Emission ratio and isotopic signatures of molecular hydrogen emissions from tropical biomass burning

    Get PDF
    In this study, we identify a biomass-burning signal in molecular hydrogen (H<sub>2</sub>) over the Amazonian tropical rainforest. To quantify this signal, we measure the mixing ratios of H<sub>2</sub> and several other species as well as the H<sub>2</sub> isotopic composition in air samples that were collected in the BARCA (Balanço Atmosférico Regional de Carbono na Amazônia) aircraft campaign during the dry season. We derive a relative H<sub>2</sub> emission ratio with respect to carbon monoxide (CO) of 0.31 ± 0.04 ppb ppb<sup>−1</sup> and an isotopic source signature of −280 ± 41&permil; in the air masses influenced by tropical biomass burning. In order to retrieve a clear source signal that is not influenced by the soil uptake of H<sub>2</sub>, we exclude samples from the atmospheric boundary layer. This procedure is supported by data from a global chemistry transport model. The &Delta;H<sub>2</sub> / &Delta;CO emission ratio is significantly lower than some earlier estimates for the tropical rainforest. In addition, our results confirm the lower values of the previously conflicting estimates of the H<sub>2</sub> isotopic source signature from biomass burning. These values for the emission ratio and isotopic source signatures of H<sub>2</sub> from tropical biomass burning can be used in future bottom-up and top-down approaches aiming to constrain the strength of the biomass-burning source for H<sub>2</sub>. Hitherto, these two quantities relied only on combustion experiments or on statistical relations, since no direct signal had been obtained from in-situ observations
    • …
    corecore