15 research outputs found

    Effect of different disinfecting procedures on the hardness and color stability of two maxillofacial elastomers over time

    Get PDF
    Objective Disinfection procedures often cause deterioration in a maxillofacial prosthesis. Color and hardness alterations could lead to a replacement of the prosthesis. Material and Methods An experimental chlorinated polyethylene (CPE) and a commercial polydimethyl siloxane (PDMS) sample were treated with four different disinfection procedures for a period which simulates 1 year of clinical service. The applied disinfection procedures included microwave exposure and immersion in three solutions, sodium hypochlorite, neutral soap and a commercial disinfecting soap. Shore A hardness (∆H) and color differences (∆E) were determined before and after each procedure. All data were analyzed by Two Way Analysis of Variance (ANOVA) and Tukey's post hoc tests at a level of α=0.05. Results The samples presented significant alterations in color and hardness after the different disinfection treatments. The color differences (∆E) were at least eye detectable in all cases and clinically unacceptable in most of the cases, with values ranging from 1.51 to 4.15 and from 1.54 to 5.92 for the PDMS and CPE material, respectively. Hardness was decreased after all the disinfection procedures in the PDMS, while for the CPE, a decrement was observed after disinfection with sodium hypochlorite and neutral soap and an increment after microwave exposure and the disinfection with a commercial antimicrobial agent. The PDMS samples presented greater alterations in color and hardness after disinfection with sodium hypochlorite solution, while the microwave exposure caused negligible effects. The CPE samples were affected most after disinfection when treated with neutral soap, and more slightly when disinfected with sodium hypochlorite solution. Conclusions The disinfection procedures caused alterations in color and hardness of the examined materials. The most suitable disinfection procedure for the PDMS material is microwave exposure, while disinfection with sodium hypochlorite solution is not recommended. The CPE material is suggested to be disinfected with sodium hypochlorite solution and the use of neutral soap is not recommended. Comparing the two materials, the PDMS material is most color stable, while the CPE material presented fewer changes in hardness

    Economic Analysis and Sustainability Study of a Coffee Production Process in Line with Circular Economy

    Get PDF
    The coffee industry is raising environmental concerns around the world due to the high energy consumption and waste produced from processing coffee beans. The highest energy consumption is the roasting stage, which utilizes thermal energy from burning fossil fuels to heat the air to a temperature of around 220 °C. This hot stream is usually vented to the atmosphere. Additionally, the process produces a by-product known as ‘silverskin’, which is commonly discarded to landfills or gets incinerated by most industries as a waste. This by-product has the potential to be exploited for the generation of high value-added products, due to its high content in antioxidant compounds. In this study, energy-saving solutions related to hot stream recycling and the valorization of silverskin by-product were evaluated in the context of sustainability and circular economy. The proposed solutions of the present work include the installation of a heat pump for the pre-roasting of the coffee beans, resulting in a reduction in usage of fossil fuels and the incorporation of innovative extraction techniques for the recovery of valuable compounds, such as phenolics and flavonoids. Moreover, an economic analysis of the proposed solutions was carried out with the aim of evaluating the economic feasibility and sustainability of this specific investment project. Finally, scale-up experiments were performed to evaluate the impact of the proposed methodologies in a conventional coffee production line

    A Comparative Study of Encapsulation of β-Carotene via Spray-Drying and Freeze-Drying Techniques Using Pullulan and Whey Protein Isolate as Wall Material

    No full text
    The encapsulation of β-carotene was investigated using pullulan and whey protein isolate (WPI) as a composite matrix at a weight ratio of 20:80, employing both spray-drying and freeze-drying techniques. The influence of processing parameters such as the concentration of wall material, flow rate, and inlet temperature for SP encapsulants, as well as wall-material concentration for FZ encapsulants, was examined in terms of encapsulation efficiency (EE). The morphology, structural characterization, moisture sorption isotherms, and thermal properties of the resulting encapsulants at optimum conditions were determined. Their stability was investigated under various levels of water activity, temperature conditions, and exposure to UV–Vis irradiation. β-carotene was efficiently encapsulated within SP and FZ structures, resulting in EE of approximately 85% and 70%, respectively. The degradation kinetics of β-carotene in both structures followed a first-order reaction model, with the highest rate constants (0.0128 day−1 for SP and 0.165 day−1 for FZ) occurring at an intermediate water-activity level (aw = 0.53) across all storage temperatures. The photostability tests showed that SP encapsulants extended β-carotene’s half-life to 336.02 h, compared with 102.44 h for FZ encapsulants, under UV–Vis irradiation. These findings highlight the potential of SP encapsulants for applications in functional foods, pharmaceuticals, and carotenoid supplements

    Use of Electrospinning for Sustainable Production of Nanofibers: A Comparative Assessment of Smart Textiles-Related Applications

    No full text
    Textile production is a major component of the global industry, with sales of over USD 450 billion and estimations of an 84% increase in their demand in the next 20 years. In recent decades, protective and smart textiles have played important roles in the social economy and attracted widespread popularity thanks to their wide spectrum of applications with properties, such as antimicrobial, water-repellent, UV, chemical, and thermal protection. Towards the sustainable manufacturing of smart textiles, biodegradable, recycled, and bio-based plastics are used as alternative raw materials for fabric and yarn production using a wide variety of techniques. While conventional techniques present several drawbacks, nanofibers produced through electrospinning have superior structural properties. Electrospinning is an innovative method for fiber production based on the use of electrostatic force to create charged threads of polymer solutions. Electrospinning shows great potential since it provides control of the size, porosity, and mechanical resistance of the fibers. This review summarizes the advances in the rapidly evolving field of the production of nanofibers for application in smart and protective textiles using electrospinning and environmentally friendly polymers as raw materials, and provides research directions for optimized smart fibers in the future

    Sustainable Valorisation of Peach and Apricot Waste Using Green Extraction Technique with Conventional and Deep Eutectic Solvents

    No full text
    Worldwide, fruit processing industries reject high volumes of fruit waste, which represent rich sources of phenolic compounds and can be valorised through extraction, and then be reused for food, nutraceutical or cosmetic applications. In the present work, the optimisation of the recovery of phenolic compounds from apricot kernels and pulp, as well as peach pulp, through the green method of ultrasound and microwave assisted extraction (UMAE) is performed. Prior to extraction, a drying step of the pulps is conducted using freeze, vacuum and hot air drying. Except for the conventional extraction solvents of water and ethanol:water, a deep eutectic solvent (DES) formed by choline chloride/urea, and a natural deep eutectic solvent (NaDES) from choline chloride with lactic acid, are used, something that presentsecological benefits. With the aim of discovering the optimum extraction conditions, different values of the parameters of extraction time, utrasonic power and solvent/dry solid ratio are examined, and a mathematical model is developed to correlate them to the extraction yield (EY). The phenolic compounds and the antioxidant activity are determined through UV-Vis spectroscopy and High-Performance Liquid Chromatography (HPLC). The results of the study demonstrated that the most effective solvent in the extraction of apricot kernels is ethanol: water; DES is more efficient in the extraction of apricot pulp and NaDES in the extraction of peach pulps, reaching EYs of 25.65, 26.83 and 17.13%, respectively. In conclusion, both types of fruit waste are proved to have a significant content of valuable compounds, and the use of DES in fruit by-product extraction is effective and seems to be a promising alternative. Thus, the unexploited amounts of waste can be valorised through simple techniques and innovative solvents

    Microalgae based innovative animal fat and proteins replacers for application in functional baked products

    No full text
    Animal fat and proteins, such as milk butter and eggs, are the main ingredients of baked products, and are frequently blamed for food allergies, obesity, cancer and type II diabetes. Therefore, there is an urgent need to replace these ingredients with healthier ones without degrading the organoleptic characteristics of the final product. Microalgae are a great source of protein, minerals and lipids such as omega-3 and omega-6 fatty acids, which are beneficial for human health, offering multiple health benefits such as antioxidant and anti-aging activity. In this study, Chlorella vulgaris microalgae were the selected raw material for the innovative replacers because of their high content in proteins and polyunsaturated fatty acids. The obtained microalgal oil was colour corrected and used to produce brioche-type baked products with 100% animal fat substitution. For protein recovery, the aquatic extract was freeze-dried, producing a dry protein powder that fully substituted the animal protein in the baked products. Finally, the development of bakery products with 100% replacement of both animal fat and protein was achieved. These innovative bakery products showed equal performance to the commercial ones, and even improved organoleptic characteristics according to the sensorial analysis that occurred

    Effects of organic and inorganic fertilization on yield and quality of processing tomato (Lycopersicon esculentum Mill.)

    No full text
    The demand for organically grown products is increasing because many people are concerned about the environment and believe that organic products are healthier than conventional ones. Some studies have shown that organically produced tomato fruits contain higher levels of antioxidants, polyphenols and carotenoids than those produced conventionally. The objective of this study was to evaluate the influence of organic and inorganic fertilization on agronomic and quality characteristics of the processing tomato. The 2-year experiment was laid out in a randomized complete block design, with three replications and three fertilization treatments (untreated, compost and inorganic fertilizer). The results showed that the highest fruit number per plant (98.5), average fruit weight (63.6 g) and fruit yield (168.0 t ha−1) were obtained under inorganic fertilization. The highest total soluble solids (4.39 °Brix) and total soluble solids to titratable acidity ratio (17.4), L* (43.4) and a* (35.4) values, as well as the highest lycopene content (88.5 mg kg−1 f.w). were achieved through the application of organic fertilizer. Significantly higher total soluble solids and total soluble solids to titratable acidity ratio in organically grown tomatoes are particularly important to the processing tomato industry. Finally, the highest lycopene content produced under organic fertilization as well as the non-significant difference between the organic and conventional tomatoes in terms of lycopene yield make organic processing tomatoes suitable for lycopene production
    corecore