198 research outputs found
Incremental bounded model checking for embedded software
Program analysis is on the brink of mainstream usage in embedded systems development. Formal verification of behavioural requirements, finding runtime errors and test case generation are some of the most common applications of automated verification tools based on bounded model checking (BMC). Existing industrial tools for embedded software use an off-the-shelf bounded model checker and apply it iteratively to verify the program with an increasing number of unwindings. This approach unnecessarily wastes time repeating work that has already been done and fails to exploit the power of incremental SAT solving. This article reports on the extension of the software model checker CBMC to support incremental BMC and its successful integration with the industrial embedded software verification tool BTC EMBEDDED TESTER. We present an extensive evaluation over large industrial embedded programs, mainly from the automotive industry. We show that incremental BMC cuts runtimes by one order of magnitude in comparison to the standard non-incremental approach, enabling the application of formal verification to large and complex embedded software. We furthermore report promising results on analysing programs with arbitrary loop structure using incremental BMC, demonstrating its applicability and potential to verify general software beyond the embedded domain
Equivalence Checking a Floating-point Unit against a High-level C Model
Semiconductor companies have increasingly adopted a methodology that starts with a system-level design specification in C/C++/SystemC. This model is extensively simulated to ensure correct functionality and performance. Later, a Register Transfer Level (RTL) implementation is created in Verilog, either manually by a designer or automatically by a high-level synthesis tool. It is essential to check that the C and Verilog programs are consistent. In this paper, we present a two-step approach, embodied in two equivalence checking tools, VERIFOX and HW-CBMC, to validate designs at the software and RTL levels, respectively. VERIFOX is used for equivalence checking of an untimed software model in C against a high-level reference model in C. HW-CBMC verifies the equivalence of a Verilog RTL implementation against an untimed software model in C. To evaluate our tools, we applied them to a commercial floating-point arithmetic unit (FPU) from ARM and an open-source dual-path floating-point adder
Towards Verifying Nonlinear Integer Arithmetic
We eliminate a key roadblock to efficient verification of nonlinear integer
arithmetic using CDCL SAT solvers, by showing how to construct short resolution
proofs for many properties of the most widely used multiplier circuits. Such
short proofs were conjectured not to exist. More precisely, we give n^{O(1)}
size regular resolution proofs for arbitrary degree 2 identities on array,
diagonal, and Booth multipliers and quasipolynomial- n^{O(\log n)} size proofs
for these identities on Wallace tree multipliers.Comment: Expanded and simplified with improved result
Recommended from our members
Theory Learning with Symmetry Breaking
This paper investigates the use of a Prolog coded SMT solver in tackling a well known constraints problem, namely packing a given set of consecutive squares into a given rectangle, and details the developments in the solver that this motivates. The packing problem has a natural model in the theory of quantifier-free integer difference logic, a theory supported by many SMT solvers. The solver used in this work exploits a data structure consisting of an incremental Floyd-Warshall matrix paired with a watch matrix that monitors the entailment status of integer difference constraints. It is shown how this structure can be used to build unsatisfiable theory cores on the fly, which in turn allows theory learning to be incorporated into the solver. Further, it is shown that a problem-specific and non-standard approach to learning can be taken where symmetry breaking is incorporated into the learning stage, magnifying the effect of learning. It is argued that the declarative framework allows the solver to be used in this white box manner and is a strength of the solver. The approach is experimentally evaluated
Interprocedural Reachability for Flat Integer Programs
We study programs with integer data, procedure calls and arbitrary call
graphs. We show that, whenever the guards and updates are given by octagonal
relations, the reachability problem along control flow paths within some
language w1* ... wd* over program statements is decidable in Nexptime. To
achieve this upper bound, we combine a program transformation into the same
class of programs but without procedures, with an Np-completeness result for
the reachability problem of procedure-less programs. Besides the program, the
expression w1* ... wd* is also mapped onto an expression of a similar form but
this time over the transformed program statements. Several arguments involving
context-free grammars and their generative process enable us to give tight
bounds on the size of the resulting expression. The currently existing gap
between Np-hard and Nexptime can be closed to Np-complete when a certain
parameter of the analysis is assumed to be constant.Comment: 38 pages, 1 figur
Automatic Abstraction in SMT-Based Unbounded Software Model Checking
Software model checkers based on under-approximations and SMT solvers are
very successful at verifying safety (i.e. reachability) properties. They
combine two key ideas -- (a) "concreteness": a counterexample in an
under-approximation is a counterexample in the original program as well, and
(b) "generalization": a proof of safety of an under-approximation, produced by
an SMT solver, are generalizable to proofs of safety of the original program.
In this paper, we present a combination of "automatic abstraction" with the
under-approximation-driven framework. We explore two iterative approaches for
obtaining and refining abstractions -- "proof based" and "counterexample based"
-- and show how they can be combined into a unified algorithm. To the best of
our knowledge, this is the first application of Proof-Based Abstraction,
primarily used to verify hardware, to Software Verification. We have
implemented a prototype of the framework using Z3, and evaluate it on many
benchmarks from the Software Verification Competition. We show experimentally
that our combination is quite effective on hard instances.Comment: Extended version of a paper in the proceedings of CAV 201
A Survey of Satisfiability Modulo Theory
Satisfiability modulo theory (SMT) consists in testing the satisfiability of
first-order formulas over linear integer or real arithmetic, or other theories.
In this survey, we explain the combination of propositional satisfiability and
decision procedures for conjunctions known as DPLL(T), and the alternative
"natural domain" approaches. We also cover quantifiers, Craig interpolants,
polynomial arithmetic, and how SMT solvers are used in automated software
analysis.Comment: Computer Algebra in Scientific Computing, Sep 2016, Bucharest,
Romania. 201
Model Checking Boot Code from AWS Data Centers
This paper describes our experience with symbolic model checking in an industrial setting. We have proved that the initial boot code running in data centers at Amazon Web Services is memory safe, an essential step in establishing the security of any data center. Standard static analysis tools cannot be easily used on boot code without modification owing to issues not commonly found in higher-level code, including memory-mapped device interfaces, byte-level memory access, and linker scripts. This paper describes automated solutions to these issues and their implementation in the C Bounded Model Checker (CBMC). CBMC is now the first source-level static analysis tool to extract the memory layout described in a linker script for use in its analysis
Quantifier-Free Interpolation of a Theory of Arrays
The use of interpolants in model checking is becoming an enabling technology
to allow fast and robust verification of hardware and software. The application
of encodings based on the theory of arrays, however, is limited by the
impossibility of deriving quantifier- free interpolants in general. In this
paper, we show that it is possible to obtain quantifier-free interpolants for a
Skolemized version of the extensional theory of arrays. We prove this in two
ways: (1) non-constructively, by using the model theoretic notion of
amalgamation, which is known to be equivalent to admit quantifier-free
interpolation for universal theories; and (2) constructively, by designing an
interpolating procedure, based on solving equations between array updates.
(Interestingly, rewriting techniques are used in the key steps of the solver
and its proof of correctness.) To the best of our knowledge, this is the first
successful attempt of computing quantifier- free interpolants for a variant of
the theory of arrays with extensionality
Software Model Checking with Explicit Scheduler and Symbolic Threads
In many practical application domains, the software is organized into a set
of threads, whose activation is exclusive and controlled by a cooperative
scheduling policy: threads execute, without any interruption, until they either
terminate or yield the control explicitly to the scheduler. The formal
verification of such software poses significant challenges. On the one side,
each thread may have infinite state space, and might call for abstraction. On
the other side, the scheduling policy is often important for correctness, and
an approach based on abstracting the scheduler may result in loss of precision
and false positives. Unfortunately, the translation of the problem into a
purely sequential software model checking problem turns out to be highly
inefficient for the available technologies. We propose a software model
checking technique that exploits the intrinsic structure of these programs.
Each thread is translated into a separate sequential program and explored
symbolically with lazy abstraction, while the overall verification is
orchestrated by the direct execution of the scheduler. The approach is
optimized by filtering the exploration of the scheduler with the integration of
partial-order reduction. The technique, called ESST (Explicit Scheduler,
Symbolic Threads) has been implemented and experimentally evaluated on a
significant set of benchmarks. The results demonstrate that ESST technique is
way more effective than software model checking applied to the sequentialized
programs, and that partial-order reduction can lead to further performance
improvements.Comment: 40 pages, 10 figures, accepted for publication in journal of logical
methods in computer scienc
- …