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ABSTRACT
This paper investigates the use of a Prolog coded SMT solver in tack-
ling a well known constraints problem, namely packing a given set
of consecutive squares into a given rectangle, and details the devel-
opments in the solver that this motivates. The packing problem has
a natural model in the theory of quantifier-free integer difference
logic, a theory supported by many SMT solvers. The solver used
in this work exploits a data structure consisting of an incremental
Floyd-Warshall matrix paired with a watch matrix that monitors
the entailment status of integer difference constraints. It is shown
how this structure can be used to build unsatisfiable theory cores
on the fly, which in turn allows theory learning to be incorporated
into the solver. Further, it is shown that a problem-specific and
non-standard approach to learning can be taken where symmetry
breaking is incorporated into the learning stage, magnifying the
effect of learning. It is argued that the declarative framework allows
the solver to be used in this white box manner and is a strength of
the solver. The approach is experimentally evaluated.

CCS CONCEPTS
• Theory of computation→ Shortest paths; Packing and covering
problems; • Software and its engineering→ Constraint and logic
languages;
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SAT solving, Constraints
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1 INTRODUCTION
Integer difference constraints have the form xi − x j ≤ c , where c is
an integer constant. Solving sets or boolean combinations of integer
difference constraints is of interest in constraint solving where
many positional constraints are naturally described as differences.
They are also of interest in formal verification where descriptions of
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timing constraints and paths can be encoded, and software analysis,
for example of concurrent programs [2].

Rectangle packing problems have attracted considerable inter-
est in constraint programming [27] owing to their application in
scheduling and layout design. This paper considers the consecutive
squares packing problem [17], the problem of placing squares of
size 1 × 1,2 × 2,...,n × n into a rectangle of given dimensions. It
is argued in [27] that this problem is a good test of search meth-
ods for constraint problems. The problem has a natural model as
boolean combinations of integer difference constraints, and the
disjunctive nature of the model suggests that the problem might be
tackled using an SMT solver over the theory of integer difference
constraints (often called integer difference logic). This theory has
been supported by SMT solvers since their first development [23].

This paper details developments of a declarative SMT solver
motivated by tackling this class of problems as a strength test. The
solver is coded in Prolog and has at its heart the SAT solver from
[12–14], whilst using constraint reification [25] as a mechanism
to realise theory propagation. In [26] integer difference logic was
integrated into the solver using an incremental variation of the
Floyd-Warshall algorithm, together with a structure called a watch
matrix that improves propagation from the theory decision pro-
cedure into the boolean component of the problem. The solver
works with the natural declarative model of the problem, and this
paper details enhancements to the solver. In particular, the Floyd-
Warshall matrix can be adapted to build unsatisfiable cores, that is,
certificates of unsatisfiability, and these can be used to add theory
learning (the learning of new boolean constraints from theory fail-
ure) to the solver. Most significantly, theory learning is enhanced
by exploiting symmetry, so that a single failure can be used to learn
multiple clauses. Whilst this specialisation of learning is applica-
tion specific in its detail, the tactic of specialising learning using
problem structure is more generally applicable and promises to be
a powerful tactic for SMT solving in general.

In previous work on SAT and SMT solvers built in Prolog it has
been argued that the resulting succinct declarative solvers make
for good white box solvers, that is, solvers that can easily be de-
ployed and adapted for new applications [13, 14, 25, 26]. This work
demonstrates this point – the application of the solver presented
motivates a new kind of problem specific theory learning in the
form of symmetry breaking theory learning, where one conflict
leads to many learnt clauses. The declarative SMT framework nat-
urally accommodates this new instance of learning.

This paper makes the following contributions:

• it is demonstrated that the incremental Floyd-Warshall and
watch matrix structure used for integer difference logic can
be adapted to enable unsatisfiable theory cores to be built
on the fly;
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• it is shown how these cores can be used to add theory learn-
ing to an SMT solver;
• it is shown that rectangle packing problems can be natu-
rally expressed in quantifier-free integer difference logic and
an experimental evaluation of the solver on this class of
problems is given;
• it is demonstrated that theory learning in this solver can be
considerably strengthened by adding symmetry breaking in
the learning phase, and it is argued that this is a strength of
the underlying solver framework.

The remainder of this paper is structured as follows. Section 2
gives background on SAT, SMT and their implementation in Prolog
and section 3 describes the rectangle packing problem. Section 4
describes how the incremental Floyd-Warshall approach to solving
integer difference logic problems can be used to incorporate theory
learning into the solver, then section 5 describes how this might be
used with symmetry breaking to make it more powerful. Section 6
gives an experimental evaluation of the resulting solver, Section 7
gives a brief overview of related work, whilst section 8 discusses
these results and the structure of the solver.

2 SAT MODULO THEORIES
This section gives background on SAT solving, SATmodulo theories
(SMT), quantifier-free integer difference logic and their implemen-
tation using logical variables, delay declarations and reification in
Prolog.

2.1 SAT solving
The boolean satisfiability problem (SAT) is the problem of determin-
ing whether for a given boolean formula, there is a truth assignment
to the variables of the formula under which the formula evaluates
to true. Most recent SAT solvers are based on the Davis, Putnam,
Logemann, Loveland (DPLL) algorithm [8] with watched literals
[20].

At the heart of the DPLL approach is unit propagation. Let f be
a propositional formula in CNF over a set of propositional variables
X . Let θ : X → {true, false} be a partial (truth) function. Unit
propagation examines each clause in f to deduce a truth assignment
θ ′ that extends θ and necessarily holds for f to be satisfiable. For
example, suppose f = (¬x ∨ z) ∧ (u ∨ ¬v ∨ w ) ∧ (¬w ∨ y ∨
¬z) so that X = {u,v,w,x ,y, z} and θ is the partial function θ =
{x 7→ true,y 7→ false}. In this instance the clause (¬x ∨ z) has one
unassigned literal (is a unit clause), therefore for it to be satisfiable,
hence f as a whole, it is necessary that z 7→ true. Moreover, for
(¬w ∨ y ∨ ¬z) to be satisfiable, it follows that w 7→ false. The
satisfiability of (u ∨ ¬v ∨w ) depends on two unknowns, u and v ,
so no further information can be deduced from this clause. Hence
θ ′ = θ ∪ {w 7→ false, z 7→ true}.

Search for a satisfying assignment proceeds as follows: starting
from an empty truth function θ , an unassigned variable x occur-
ring in f is selected and x 7→ true is added to θ . Unit propagation
extends θ until either no further propagation is possible or a con-
tradiction is found. In the first case, if all clauses are satisfied then
f is satisfied, else another unassigned variable is selected. In the
second case, x 7→ false is added to θ ; if this fails search backtracks

to a previous assignment. Search and propagation continues in this
manner. Further details can be found in [13, 18, 33].

The solver that provides the SAT engine for this work [13, 14]
succinctly implements unit propagation with watched literals in 22
lines of Prolog using logical variables and delay declarations.

2.2 Integer Difference Logic
Difference constraints are a strict subclass of linear constraints
where each constraint has the form xi−x j ≤ c , where c is a constant.
If xi , x j range over the integers and c is constrained to be an integer,
then the constraints are called integer difference constraints. Note
that bounds on a variable can be expressed in these constraints by
introducing an additional variable z which is interpreted as zero.
Then xi ≤ c becomes xi − z ≤ c and xi ≥ c becomes z − xi ≤ −c .

This class of constraints has been used in SMT solving [22],
where the theory of propositional combinations of these constraints
is called quantifier-free integer difference logic (QF_IDL, or IDL).

The key result in solving difference constraints is that a system
of difference constraints can be modelled as a weighted directed
graph where the nodes are the variables occurring in the system
and each constraint is encoded as an edge in the graph: xi − x j ≤ c
gives an edge from node xi to node x j weighted by c . Satisfiability
of the system is equivalent to absence of a negative cycle [5]. The
Bellman-Ford single source shortest path algorithm can establish
this inO (mn) where n is the number of nodes andm is the number
of edges. This algorithm is commonly used in SMT solvers over
integer difference logic. However, this means that entailment or
disentailment of constraints is not detected as part of the consis-
tency check, meaning that complete propagation from the theory
into boolean component is not achieved.

In [26] the Floyd-Warshall algorithm [10, 32] for finding the
shortest path between each pair of nodes in a graph is used. Whilst
this algorithm is O (n3) for establishing consistency it allows better
propagation to be achieved, as explained in section 2.6.

Consider as an example the system consisting of (the conjunction
of) the inequalities:

x1 − z ≤ 2 x2 − z ≤ 1
z − x2 ≤ −1 z − x1 ≤ −1
y1 − z ≤ 2 y2 − z ≤ 1
z − y2 ≤ −1 z − y1 ≤ −1

In case (a) of Figure 1 this system is represented as a graph, and the
matrix representing this graph after the Floyd-Warshall algorithm
has been applied to it is presented.

A key attraction of Floyd-Warshall is that it can be applied in-
crementally [4], that is, once the algorithm has been applied to a
graph, a single new edge can be added to the graph (constraint to
the system) and the matrix describing the shortest paths can be up-
dated, rather than recomputed from scratch. This means checking
for a shorter path for each entry in the matrix, hence update takes
O (n2) time.

Consider the system above augmented with the inequality x2 −
x1 ≤ −2 which is an inconsistent system. This is represented in
case (b) of Figure 1. If any of the entries along the diagonal of the
matrix is negative then the system is inconsistent. Note that when
the system becomes inconsistent this is all the matrix represents –
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(a)

x1 x2

y2y1

z

2-1 1-1

2 -13 -1



x1 y1 x2 y2 z
x1 0 2 0 1 −1
y1 1 0 0 1 −1
x2 1 2 0 1 −1
y2 1 2 0 0 −1
z 2 3 1 2 0



(b)

x1 x2

y2y1

z

2-1 1-1

2 -13 -1

-2



x1 y1 x2 y2 z
x1 −1 −1 −2 −2 −4
y1 0 0 −1 0 −2
x2 0 0 −2 −1 −3
y2 −1 −3 −5 −4 −6
z 0 −2 −4 −3 −5



(c)

x1 x2

y2y1

z

2-1 1-1

2 -13 -1

-2



x1 y1 x2 y2 z
x1 0 2 0 0 −1
y1 −1 0 −2 −2 −3
x2 1 2 0 1 −1
y2 1 2 0 0 −1
z 2 3 1 1 0



Figure 1: Illustrating Floyd-Warshall

with a negative cycle any path including this negative cycle can be-
come arbitrarily negative, so the values no longer represent shortest
path lengths.

Also consider the original system augmented with y2 −y1 ≤ −2.
Here the system is still consistent and the entries of the matrix are
updated to record the shortest paths between nodes, as illustrated
in case (c) of Figure 1. For example, in the original system the path
from x1 to y1 had weight 1, the path from x1 to y2 had weight 1 and
the path fromy1 to itself weight 0. The new inequality gives an edge
from y2 to y1 with weight −2. The two original paths are linked by
this to give a path from x1 toy1 withweight−1which represents the
shortest path between these two nodes and the matrix is updated
accordingly.

2.3 SMT solving
SAT modulo theories (SMT) gives a general scheme for determining
the satisfiability of problems consisting of a formula over atomic
constraints in some theory T , whose set of literals is denoted Σ [23,
31]. The scheme separates the propositional skeleton – the logical
structure of combinations of theory literals – and the meaning of
the literals. A bijective encoder mapping e : Σ → X associates

each literal with a unique propositional variable. Then the encoder
mapping e is lifted to theory formulae, using e (ϕ) to denote the
propositional skeleton of a theory formula ϕ.

The example from section 2.2 is extended with four additional
theory literals, encoded by v9, ...v12 in the encoded map below:

e (x1 − z ≤ 2) = v1 e (x2 − z ≤ 1) = v2
e (z − x2 ≤ −1) = v3 e (z − x1 ≤ −1) = v4
e (y1 − z ≤ 2) = v5 e (y2 − z ≤ 1) = v6
e (z − y2 ≤ −1) = v7 e (z − y1 ≤ −1) = v8
e (x1 − x2 ≤ −1) = v9 e (x2 − x1 ≤ −2) = v10
e (y1 − y2 ≤ −1) = v11 e (y2 − y1 ≤ −2) = v12

The conjunction from section 2.2 is further conjoined with the
disjunction of the four additional inequalities giving the boolean
combination of inequalities ϕ, where e (ϕ) is:

e (ϕ) =
v1 ∧v2 ∧v3 ∧v4 ∧v5 ∧v6 ∧v7 ∧v8∧
(v9 ∨v10 ∨v11 ∨v12)

A SAT solver gives a truth assignment θ satisfying the proposi-
tional skeleton. From this, a conjunction of theory literals, T̂hΣ (θ , e )
is constructed. The subscript Σ will be omitted when it refers to all
literals in a problem. To construct the conjunction, where ℓ ∈ Σ, a
conjunct is the literal ℓ if θ (e (ℓ)) = true and ¬ℓ if θ (e (ℓ)) = false.
This problem is passed to a solver for the theory that can determine
satisfiability of conjunctions of constraints. Either satisfiability or
unsatisfiability is determined, in the latter case the SAT solver is
asked for further satisfying truth assignments. This formulation of
SMT is known as the lazy-basic approach and details on its Prolog
implementation can be found in [14].

2.4 SMT, the DPLL(T ) approach
The lazy-basic approach finds complete satisfying assignments
to the SAT problem given by the propositional skeleton before
computing the satisfiability of the theory problem T̂h(θ , e ). Another
approach is to couple the SAT and the theory problems more tightly
by determining constraints entailed by the theory and propagating
the bindings back into the SAT problem. This is known as theory
propagation and is encapsulated in the DPLL(T ) approach. Figure 3
gives a recursive formulation of DPLL(T ) derived from Algorithm
11.2.3 from [18]. Importantly, on line (7) of propagate this includes a
conflict analysis determining why failure has occurred in the theory
component T̂h(θ , e ). The conflict analysis can then learn clauses
that when conjoined with the boolean component of the problem
block this failure from occurring again. This is referred to as theory
learning throughout this paper. A more general formulation of
DPLL(T ) would additionally replace lines (11)-(15) of DPLL(T ) with
a conflict analysis on the boolean component.

The two functions have access to a boolean formula f (initially
f is the propositional skeleton of the input problem, e (ϕ), but it
may be updated) and an encoder mapping, e . The function DPLL(T )
has as its argument a partial truth assignment, θ . DPLL(T ) is first
invoked with θ empty. It returns a truth assignment if the problem
is satisfiable and the constant ⊥ otherwise.

The call to propagate is the key operation. The function returns
a pair consisting of a truth assignment and res taking value ⊤ or ⊥
indicating the satisfiability of f and T̂h(θ , e ). The second argument
to propagate is a set of theory literals, D, and the function begins
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by extending the truth assignment by assigning propositional vari-
ables identified by the encoder mapping. Next, unit propagation
as described in section 2.1 is applied. The deduction function then
infers those literals that hold as a consequence of the extended
truth assignment. The function returns a pair consisting of a set of
theory literals entailed by T̂h(θ2, e ) and a flag res whose value is
⊥ if T̂h(θ2, e ) or θ2 are inconsistent and ⊤ otherwise. The function
propagate calls itself recursively until no further propagation is
possible. After deduction returns, if f is not yet satisfied and no
conflict has occurred then a further truth assignment is made and
DPLL(T ) calls itself recursively.

The DPLL(T ) approach incrementally investigates the consis-
tency of the posted constraints as propositional variables are as-
signed. Further, it identifies literals, ℓ, such that T̂h(θ , e ) |= ℓ, allow-
ing e (ℓ) to be assigned during propagation. The interplay between
propositional satisfiability and the consistency of the store T̂h(θ , e )
is important to this approach. Theory conflict analysis can reduce
the search space by learning additional boolean clauses that must
be satisfied. It could simply return true (in which case it does not
reduce the search space), but more powerful analyses will poten-
tially give more and stronger clauses. Incorporating techniques
for adding power to theory learning is a key component of this
investigation.

2.5 Theory propagation and reification
This section provides a framework for incorporating theory prop-
agation into the propagation framework of the SAT solver from
[14]. The approach is based on reifying theory literals with logical
variables [25, 26]. As will be illustrated in subsequent sections, this
exploits the control provided by delay declarations to realise theory
propagation. The integration is almost seamless since the base SAT
solver is also realised using logical variables and delay declarations.

There are three major steps in setting up a DPLL(T ) solver for
some problem ϕ: setting up the encoder map e , linking each theory
literal in a problem with a logical variable; posting theory propa-
gators (adding constraints) that reify the theory literals with the
logical variables provided by e; posting the SAT problem defined
by the propositional skeleton e (ϕ), then solving the whole problem.
The code in Figure 2 describes the high level call to the solver.

Set up: Where Prob is an SMT formula over some theory, let
lit (Prob) be the set of literals occurring in Prob. TheoryLiteral is
a list of pairs ℓ−e (ℓ) (or rather, ℓ ↔ e (ℓ)), where ℓ ∈ lit (Prob), that
defines the encoder mapping e . Skeleton represents the proposi-
tional skeleton of the problem, e (Prob). Vars represents the set of
variables e (ℓ). The role of the predicate setup(+,-,-,-) is, given
Prob, to instantiate the remaining variables.

Theory propagators: The role of post_theory is to set up
predicates to reify each theory literal. The control on these predi-
cates is key; the predicates need to be blocked until either e (ℓ) is
assigned, or the literal (or its negation) is entailed by the constraint
store T̂h(θ , e ). That is, the predicate for ℓ − e (ℓ) will propagate in
one of four ways:
• If T̂h(θ , e ) |= ℓ then e (ℓ) 7→ true
• If T̂h(θ , e ) |= ¬ℓ then e (ℓ) 7→ false
• If e (ℓ) = true then the store is updated to T̂h(θ ∪ {e (ℓ) 7→
true}, e )

• If e (ℓ) = false then the store is updated to T̂h(θ ∪ {e (ℓ) 7→
false}, e )

Boolean propagators: The role of post_boolean is to set up
unit propagators for the SAT part of the problem e (Prob). This is a
call to problem_setup as described in [14]. Search is then driven
by assignments to the variables using elim_var.

Implementing the interface provided by predicates setup and
post_theory, together with the SAT solver from [14] results in
a DPLL(T ) SMT solver. Note that the propagators posted for the
theory and boolean components are intended to capture the spirit
of the function propagate from Figure 3. Indeed, the integration
between theory and boolean propagation is even tighter than the
algorithm indicates. Rather than performing unit propagation to
completion, then performing theory propagation, then repeating,
here the assignment of a boolean variable is immediately communi-
cated to the theory. This tactic is known as immediate propagation
[18] and is a natural consequence of using Prolog’s control to im-
plement propagators.

dpll_t(Prob):-
setup(Prob, TheoryLiterals, Skeleton, Vars),
post_theory(TheoryLiterals),
post_boolean(Skeleton),
elim_var(Vars).

Figure 2: Interface to the DPLL(T ) solver

2.6 SM(IDL) using the Watch Matrix
Improved theory propagation was achieved for SM(IDL) in [26] by
pairing the Floyd-Warshall matrix with a new structure called the
watch matrix. The desired propagation behaviour is as follows: for
each constraint reified by the encoder mapping, if that constraint
is entailed its reifying variable should be set to true and if that
constraint is disentailed it should be set to false. The watch matrix
captures this behaviour by shadowing the Floyd-Warshall matrix.
Each entry in the Floyd-Warshall matrix is indexed by a pair of
variables (xi ,x j ). Each constraint in Σ has form xi − x j ≤ c and its
negation x j − xi ≤ −(c + 1). The watch matrix has (xi ,x j ) entries
consisting of a pair of lists each element being a constant c (from
xi −x j ≤ c or x j −xi ≤ c) itself paired with the appropriate reifying
variable. The first list corresponds to those inequalites that should
be true if entailed, the second those that should be false. These
lists are initialised during the setup stage. If an entry in the Floyd-
Warshall matrix changes then the corresponding entries in the
watch matrix are retrieved, checked for entailment or disentailment
and the reifying variable assigned, if appropriate.

For example, returning to the system considered above in Fig-
ure 1, case (a), and the inequality x1 −x2 ≤ −1. The negation of this
(integer) inequality is x2−x1 ≤ 0. Also, inequality x2−x1 ≤ −2 ∈ Σ.
Then the watch matrix has (x2,x1) entry [-2-V10]-[0-V9]. Ob-
serve that when incrementally setting up the matrix the (x2,x1)
entry of the Floyd-Warshall matrix is set to a new value 0. Since
x2−x1 ≤ 0 ̸ |= x2−x1 ≤ −2, V10 the reifying variable forx2−x1 ≤ −2
should be set to false.

The code that instantiates the interface for post_theory is given
across Figures 4, 5 and 6. Figure 4 builds Store as AVL trees where
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input: f : CNF formula, e : Σ→ X

(1) function DPLL(T )(θ : truth assignment)
(2) begin
(3) (θ3, res) := propagate(θ , ∅);
(4) if (is-satisfied(f , θ3)) then
(5) return θ3;
(6) else if (res = ⊥) then
(7) return ⊥;
(8) else
(9) x := choose-free-variable(f , θ3);
(10) (θ4, res) := DPLL(T )(θ3 ∪ {x 7→ true});
(11) if (res = ⊤) then
(12) return θ4;
(13) else
(14) return DPLL(T )(θ3 ∪ {x 7→ false});
(15) endif
(16) endif
(17) end

(1) function propagate(θ : truth assignment, D ⊆ Σ)
(2) begin
(3) θ1 := θ ∪ {e (ℓ) 7→ true | ℓ ∈ D ∩ Σ}

∪{e (ℓ) 7→ false | ¬ℓ ∈ D ∧ ℓ ∈ Σ};
(4) θ2 := θ1∪ unit-propagation(f ,θ1);
(5) ⟨D, res⟩ := deduction(T̂h(θ2, e));
(6) if (res = ⊥)
(7) f ′ = analyse-theory-conflict(D);
(8) f := f ∧ f ′

(9) return (θ2, res);
(10) else if (D = ∅)
(11) return (θ2, res);
(12) else
(13) return propagate(θ2, D);
(14) endif
(15) end

Figure 3: Recursive formulation of the DPLL(T ) algorithm

Matrix3 is the Floyd-Warshall matrix and Watch1 is the watch
matrix. Figure 5 defines setup_reify that controls the addition
of theory literals to the Floyd-Warshall (hence also watch) ma-
trix. bool_wait delays on the instantiation of the reifying vari-
able, if the reifying variable is instantiated the constraint or its
negation is added into a queue. If variable Queue is instantiated
then this resumes the delayed process_queue, which in turn up-
dates the matrices using process_constraint as given in Figure 6;
floyd_warshall will fail if a negative cycle is detected.

3 RECTANGLE PACKING
The problem considered in this paper is the consecutive squares
rectangle packing problem, where the challange is: given three
integers, n, m1, m2, can squares of size 1 × 1, 2 × 2, ..., n × n be
packed without overlap inside a rectangle of sizem1 ×m2? It might
further be askedwhat are the dimensions of theminimally enclosing

post_theory(Encoding, Store) :-
build_store(Encoding, Store),
setup_reify(Encoding, Queue),
process_queue(Queue, Store).

build_store([], Store) :-
empty_avl(Matrix), empty_avl(Watch),
Store = store(Matrix, 0, Watch).

build_store([(X-Y =< C)-Prop | Rest], Store) :-
build_store(Rest, StoreRest),
StoreRest = store(Matrix1, N1, Watch1),
Store = store(Matrix3, N3, Watch3),
add_var(X, N1, Matrix1, N2, Matrix2),
add_var(Y, N2, Matrix2, N3, Matrix3),
(avl_fetch(X-Y, Watch1, EntL-DisL) ->

avl_store(X-Y, Watch1,
[C-Prop | EntL]-DisL, Watch2)

;
avl_store(X-Y, Watch1, [C-Prop]-[], Watch2)

),
NegC is -(C + 1),
(avl_fetch(Y-X, Watch2, EntL2-DisL2) ->

avl_store(Y-X, Watch2,
EntL2-[NegC-Prop | DisL2], Watch3)

;
avl_store(Y-X, Watch2,

[]-[NegC-Prop], Watch3)
).

Figure 4: Setting up the Floyd-Warshall matrix and the
watch matrix

rectangle. This problem and similar are of importance since they
relate to scheduling and design problems, and have been considered
widely in constraint programming [15–17, 27]. The state of the art
[16] for an optimal packing solves the n = 32 problem solved (in
over three weeks of computation time).

This problem has a natural, if naïve, description as an SMT prob-
lem and it is this description that is considered in this paper. The
positioning of each square i (the i × i square) is described by two
variables xi , yi . Here, xi describes the positioning of the left hand
side of the square, and yi describes the positioning of the bottom
side of the square. There are two kinds of contraints. First, bounding
constraints which ensure that the squares fit inside the rectangle.
So for square i to be placed inside rectangle of dimensionm1 ×m2
the bound constraints are (where z is the zero variable):

z − xi ≤ 0 ∧ xi − z ≤ m1 − i ∧ z − yi ≤ 0 ∧ yi − z ≤ m2 − i

Second, constraints that ensure that each pair of squares does
not overlap. That is, for square i and square j:

xi − x j ≤ −i ∨ x j − xi ≤ −j ∨ yi − yj ≤ −i ∨ yj − yi ≤ −j

A particularly simple example is to pack the 1×1 and 2×2 squares
into a 2 × 3 rectangle. This is the example given in Section 2.2. The
bound constraints are already given above, and to complete the
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setup_reify([], _).
setup_reify([(X-Y =< C)-Prop | Rest], Queue) :-

bool_wait(Prop, X, Y, C, Queue),
setup_reify(Rest, Queue).

:- block bool_wait(-, ?, ?, ?, ?).
bool_wait(Prop, X, Y, C, Queue) :-

Prop == true, !,
insert_queue(Queue, X, Y, C).

bool_wait(Prop, X, Y, C, Queue) :-
Prop == false, !,
NegC is -(C + 1),
insert_queue(Queue, Y, X, NegC).

insert_queue(Queue, X, Y, C) :-
var(Queue), !,
Queue = [(X-Y =< C) | _Cons].

insert_queue([_Con | Cons], X, Y, C) :-
insert_queue(Cons, X, Y, C).

:- block process_queue(-, ?).
process_queue(Queue, Store1) :-

nonvar(Queue), !,
Queue = [(X-Y =< C) | Cons],
process_constraint(X-Y =< C, Store1, Store2),
process_queue(Cons, Store2).

Figure 5: Propagating from the SAT solver to the theory
solver

problem description the following disjunction is required:

x1 − x2 ≤ −1 ∨ x2 − x1 ≤ −2 ∨ y1 − y2 ≤ −1 ∨ y2 − y1 ≤ −2

Below are two possible configurations, the first with the second
disjunct satisfied (but not the problem), the second with the fourth
disjunct (and the problem) satisfied.

In Figure 1, case (a) gives the bound constraints. Case (b) cor-
responds to the situation where second disjunct is assigned the
value true (the first picture above). Case (c) represents the situation
where the fourth disjunct is assigned true. The solution to a larger
example (15,39,33) is given in Figure 7.

4 ADDING THEORY LEARNING
This section demonstrates how the incremental Floyd-Warshall
approach can be developed so that an unsatisfiable core of an unsat-
isfiable system is determined alongside a theory failure. It further
shows how this core can be used within the solver to implement
theory learning.

process_constraint(X-Y =< C, StoreIn, StoreOut) :-
StoreIn = store(Matrix1, N, Watch),
StoreOut = store(Matrix3, N, Watch),
avl_fetch(X-Y, Matrix1, C_XY),
min(C_XY, C, Min),
(C == Min ->

matrix_update(X-Y, C, Matrix1,
Matrix2, Watch),

floyd_warshall(N, Matrix2, Matrix3, Watch)
;

Matrix3 = Matrix1
).

matrix_update(Key, Value, Matrix1, Matrix2, Watch) :-
(avl_fetch(Key, Watch, EntL-DisL) ->

true
;

EntL = [], DisL = []
),
entailed(EntL, Value),
disentailed(DisL, Value),
avl_store(Key, Matrix1, Value, Matrix2).

entailed([], _).
entailed([C-Prop | Rest], Min) :-

(Min =< C -> Prop = true ; true),
entailed(Rest, Min).

disentailed([], _).
disentailed([C-Prop | Rest], Min) :-

(Min =< C -> Prop = false ; true),
disentailed(Rest, Min).

Figure 6: Propagating from the theory solver to the SAT
solver

The key operation of the incremental Floyd-Warshall algorithm
is that if a new inequality is added to the system – and this new
inequality gives a lower entry in the matrix than the existing one –
then for each pair of nodes it is determined whether using this new
edge leads to a shorter path [4]. Suppose that the (xi ,x j ) entry is
c (the shortest path from xi to x j has length c) and that the entry
for (xk ,xℓ ) is updated to value d . Then the values for (xi ,xk ) and
(xℓ ,x j ) are looked up finding values c1, c2. If c ′ = c1 + c2 + d < c
then the (xi ,x j ) entry is updated to c ′ since a new shortest path
has been found using the new edge between xk and xℓ .

To find an unsatisfiable core, the Floyd-Warshall matrix is aug-
mented so that each entry is a pair consisting of an integer (the
length of the shortest path between two nodes, as before) and a
list (explicitly describing the shortest path; it is well known that
algorithms such as Floyd-Warshall can be made self-certifying in
this way). Returning to the above, the entry for (xi ,x j ) entry is
now a pair c − L, where L is a list. If an inequality is added to the
system, then the shortest path is the direct one, so the entry for
(xk ,xℓ ) is d − [(xk ,xℓ )]. Looking up the values for (xi ,xk ) and
(xℓ ,x j ) gives c1 −L1, c2 −L2. If c ′ = c1 +c2 +d < c then the (xi ,x j )

6
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Figure 7: Solution for (15,39,33)

entry is updated to c ′−L′, where append (L1, [(xk ,xℓ ) |L2],L′). The
previous path L is discarded, and L′ represents the new shortest
path via the new edge.

The system is unsatisfiable if for some i the entry for (xi ,xi ) is
negative. With the augmented matrix, when a negative entry is
found it comes paired with a path describing the negative cycle.
This cycle represents an unsatisfiable core of inequalities. At least
in the current set up, the length of this path is typically short (since
the number of squares that can be placed next to each other is small)
and the overhead in maintaining this structure is minimal.

Having found an unsatisfiable core, to achieve theory learning
a clause needs to be added to the problem expressing the unsat-
isfiability of this core. Where ℓi ∈ Σ, suppose that a negative cy-
cle has been found consisting of the edges given by inequalities
ℓ1, ..., ℓn posted positively and ℓn+1, ..., ℓm negatively. Then the
learned clause ¬e (ℓ1) ∨ ...∨¬e (ℓn ) ∨ e (ℓn+1) ∨ ...∨ e (ℓm ) is added
to the boolean part of the problem.

To implement this in a Prolog backtracking solver requires an
approach that will not undo the posting of the learned clause on
backtracking. This is achieved using state restoration following an
approach similar to that discussed in [14]. Each logical variable is
indexed by a unique integer. Variable assignment includes main-
taining an assignment history on the blackboard, which can be
retrieved on backtracking. As shown in Figure 8, assignment con-
sists of four clauses. The first skips past already assigned variables
(edit_restore catches the possibility that a learnt clause means
that a variable is assigned before restoration), the second and third
assign to true and false recording this to the blackboard and the

fourth clause allows this history to be popped on backtracking dur-
ing search. The blackboard call bb_get(core,[]) enforces back-
tracking once a theory failure has occurred. To suspend search (in
this instance because of theory failure that is captured by the non-
empty value stored on the blackboard under core) assign_vars
fails to root, that is, all variable assignments are undone. To re-
sume, a copy of the history is used to ensure that variables are
assigned the values they previously held before search continues as
before. There is a cost associated with this: the (re-)assignment and
propagation for the current path, but search itself is not repeated.

To enable theory learning the blackboard is used again. The call
to floyd_warshall/4 (see Figure 6) fails when a negative cycle is
detected. The watch matrix allows the encoder variables for the
constraints to be found. The indices for these variables together
with the values assigned to them are then written to the black-
board (under core). As described above search fails to root. The
predicate elim_var that controls variable assignment is redefined
as in Figure 8. The first clause attempts to assign values to the
variables. If this fails (in this instance a theory failure), the second
clause says that learning is applied (adding a blocking clause) before
elim_vars calls itself recursively on this augmented program. In
this way, the boolean component of the problem is extended mono-
tonically. Note that the core is empty when the search space has
been exhausted and that this leads to failure. As shown in Figure 9
predicate post_new_boolean builds a new clause and uses learnt
to post this to the boolean component.

7



elim_var(Vars):-
assign_vars(Vars).

elim_var(Vars):-
learn(Vars),
elim_var(Vars).

learn(Vars):-
bb_get(core, Core), Core \== [],
post_new_boolean(Core, Vars).

assign_vars([]).
assign_vars([V | Vs]) :-

label_var(V),
assign_vars(Vs).

label_var(V-N) :-
ground(V), !,
edit_restore(V-N).

label_var(V-N) :-
bb_get(core, [])
restore_from_history(N),
update_history_true(N),
V = true.

label_var(V-N) :-
bb_get(core, []),
update_history_false(N),
V = false.

label_var(_-N) :-
bb_get(core, []),
update_history_back(N),
fail.

Figure 8: Variable assignment

As an example, suppose that when searching for a solution to
the (15, 39, 33) problem, the following negative cycle is encoun-
tered [(z,x15), (x15,x14), (x14,x9), (x9,x10), (x10, z)]. Since this has
negative weight a theory failure occurs. This is recorded by writ-
ing [478-true, 1-true, 65-true, 82-true, 457-true] to
the blackboard where the integers are the indices for the encoder
variables for inequalities, that is:

e (z − x15 ≤ 0) = v478
e (x15 − x14 ≤ −15) = v1
e (x14 − x9 ≤ −14) = v65
e (x9 − x10 ≤ −9) = v82
e (x10 − z ≤ 29) = v457

This describes the following failure (the y positions are not being
considered and could be any consistent set of values):

15
14

9
10

At this point the solver fails to the root of the search. Learning
uses the variable indices to find their associated logical variables and

post_new_boolean(Core, Vars, _, _) :-
build_clause(Core, Vars, Clause), !,
learnt(Clause),
bb_put(core, []).

build_clause([], _, []).
build_clause([N-B|Ns], Vs, [V-N-NegB | Rest]) :-

lookup(Vs, N, V),
negateB(B, NegB),
build_clause(Ns, Vs, Rest).

negateB(true,false).
negateB(false,true).

lookup([V-N | _], N, V):- !.
lookup([_ | Vs], N, V) :-

lookup(Vs, N, V).

Figure 9: Learning a single clause

the learnt blocking clause is added to prevent this from occurring
again. That is, clause

¬v478 ∨ ¬v1 ∨ ¬v65 ∨ ¬v82 ∨ ¬v457

is added to the problem. Variables v478,v457 correspond to the
bounds on the rectangle and by the problem construction these
must always be assigned true. If the following partial assignment
is made or inferred {v1 7→ true,v65 7→ true} the new clause infers
that v82 7→ false, hence the theory failure above can never again
be encountered (note that in the implementation the learnt clause
is specialised so that the bound variables v478,v457, that must be
assigned true, are dropped from the learned clause, so the posted
learned clause is ¬v1 ∨ ¬v65 ∨ ¬v82).

To conclude this section is should be noted that it is possible
to find more than one core at a failure point – look along the
matrix diagonal and every negative entry defines a core. Anecdotal
experiment suggests that on the benchmark suite it is rare to find
more than a single core.

5 SYMMETRY BREAKING THEORY
LEARNING

In the consecutive squares packing problem, an unsatifiable theory
core describes a configuration of squares that will not fit inside the
given rectangle. The diagnosis stage analyses the failure and adds
an appropriate blocking clause. However, observe that once such a
core has been found other unsatisfiable configurations can also be
deduced.

For example, consider again the failure to place the 15, 14, 9 and
10 squares each to the right of the last. If this is not possible, then it
is also not possible to place these squares in order 9, 15, 10 and 14,
each to the right of the previous. This leads to the following theory
failure (again, note that the y positioning is not important):

8
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This second failure is again made up of constraints in Σ, that is,
with their encoder variables:

e (z − x9 ≤ 0) = v454 e (x9 − x15 ≤ −9) = v62
e (x15 − x10 ≤ −15) = v41 e (x10 − x14 ≤ −10) = v46
e (x14 − z ≤ 25) = v475

Adding the blocking clause:

¬v454 ∨ ¬v62 ∨ ¬v41 ∨ ¬v46 ∨ ¬v475

will block this theory failure from ever occurring.
This symmetry under permutation gives 4!=24 ways in which

the 9, 10, 14 and 15 square can be placed with each one to the right
of the previous. Once the first of these theory failures has been
detected, the other 23 can be deduced and it would be good to block
all 24 from occurring without further search.

This is problematic in a standard SMT solver used as a black box.
However, with the reification-based Prolog white box solver used
here, the learning step can be specialised by the programmer to
capture problem specific features – in this case symmetry between
failures. This has been implemented in the solver, so that on failures
such as the one above all the symmetric clauses are also learnt.

As described in the previous section, the unsatisfiable theory core
is expressed as the indices of the encoder variables, and the value
assigned to these variables. To find the symmetric cores involves
a number of stages: using the inverse of the encoder mapping the
constraints in the core are looked up; the set of integer variables
occurring in these constraints is found; all possible permutations of
these variables are generated (excluding the zero variable) and for
each of these the constraints describing a symmetric unsatisfiable
core are produced; finally the encoder mapping is used to build a
boolean clause for each core, which is posted, as before.

Returning to the example, the theory failure involved the integer
variables [x15,x14,x9,x10] (as well as z). One of the 24 permutations
of these variables is [x9,x15,x10,x14] and this permutation is used
to generate the symmetric constraint, hence blocking clause, above.

The code follows the scheme in the previous section, with a
new implementation of post_new_boolean that posts many new
boolean constraints rather than just one. As previously described,
the learning mechanism uses the blackboard to pass back the in-
dices for the encoder variables. lookup/4 uses the encoder map-
ping to find the integer variables occurring in the constraints (if
a constraint contains the zero variable then it is a bounding con-
straint that is always true, hence it is omitted from the construction).
construct_pairs finds the variable pairs for each of the symmet-
ric unsatisfiable cores, then find_clauses constructs the boolean
blocking clauses. The clauses are built using build_clause given
previously and all_learnt posts these new boolean clauses. The
definition of predicate permutations that generates a list of all
permutations of a list is omitted, as are merge and memchk.

The approach described here is applied only to cores that cor-
respond to a series of squares each to the right of the previous (or

post_new_boolean(Core, Vars, Encoding, Zero) :-
lookup(Core, Encoding, Zero, Out),
construct_pairs(Out, Pairs),
find_clauses(Pairs, Encoding, Extras),
build_clauses(Extras, Vars, Clauses), !,
all_learnt(Clauses),
bb_put(core, []).

lookup([], _, _, []).
lookup([C-_ | Cs], Encoding, Zero, VarsOut) :-

get_vars(Encoding, C, Zero, Vs),
lookup(Cs, Encoding, Zero, Vars),
merge(Vs, Vars, VarsOut).

get_vars([], _, _, []).
get_vars([I-_-C | _Rest], C, Zero, VsOut) :- !,

term_variables(I, VsTmp),
(memchk(VsTmp,Zero) -> VsOut=[]; VsOut=VsTmp).

get_vars([_ | Rest], C, Zero, Vs) :-
get_vars(Rest, C, Zero, Vs).

construct_pairs(Vars, Pairs) :-
permutations(Vars, [], Perms),
find_pairs(Perms, Pairs).

find_pairs([],[]).
find_pairs([Perm|Perms], [Pair|Pairs]):-

perm_to_pair(Perm,[],Pair),
find_pairs(Perms,Pairs).

perm_to_pair([_V | []], Pairs, Pairs).
perm_to_pair([V1,V2 | Rest], Pairs, AllPairs) :-

perm_to_pair([V2|Rest],[V1-V2|Pairs],AllPairs).

find_clauses([], _, []).
find_clauses([Pair | Pairs], Enc, [E | Extras]) :-

find_clause(Pair, Enc, E),
find_clauses(Pairs, Enc, Extras).

find_clause([], _, []).
find_clause([P | Ps], Encoding, [N-true | Ns]) :-

from_encoding(Encoding, P, N),
find_clause(Ps, Encoding, Ns).

from_encoding([], _, _). %never occurs
from_encoding([E | _Es], V1-V2, N) :-

E = I-_-M, I =.. [_, U1-U2, _],
V1 == U1, V2 == U2,!,
M = N.

from_encoding([_ | Es], V1-V2, N) :-
from_encoding(Es, V1-V2, N).

build_clauses([], _, []).
build_clauses([E | Es], Vars, [C|Cs]):-

build_clause(E, Vars, C),
build_clauses(Es, Vars, Cs).

Figure 10: Posting Symmetric Constraints9



each above the previous). However, it is also possible to extract
symmetries from more complicated cores.

Note that an alternative to this demand driven approach to sym-
metry breaking is possible: add symmetry breaking clauses up front
before search. However, the number of possible symmetries is high
leading to an infeasibly large problem specification.

6 EXPERIMENTAL RESULTS
This section presents empirical results on using the solver on the
consecutive squares packing problem. The variable ordering for
the search is such that variables relating pairs of squares cover-
ing greater area are assigned before pairs covering lesser area. In
addition, variables are assigned so that assigning two variables to
true in a clause from the original problem description is avoided.
There is a single specialisation, breaking the symmetry between
the placement of the n × n and the n − 1 × n − 1 square.

The benchmarks include the known optimal packings for each n,
and a range of problems selected to test the solver. The problem is
considered at its most difficult when close to the optimum area, and
when the shape of the rectangle is itself close to square. A selection
of benchmarks fitting this description have been chosen. In particu-
lar, unsatisfiable problems have been chosen to test exploration of
the entire search space. The solver has been built in SICStus Prolog
4.2.3, and the experiments have been run on a single core of a Dell
Precision T7610 workstation with two 8 core Intel Xeon E5-2650v2
CPUs @ 2.6 to 3.4GHz and 128GB RAM.

The results are presented in Table 1. The first column gives the
instance (n,m1,m2) where n is the size of the largest of the squares
to be packed into anm1 ×m2 rectangle. The second column says
whether or not the instance is satisfiable. The next three columns
give measures of the search using the SMT solver without learning
from [26]: the number of theory failures, the number of boolean
assignments and the (cpu) time in milliseconds (using the statistics
predicate with first argument runtime; time given is that for the
fastest of five runs). The next three columns give the same measures
for the solver with theory learning and the final three for the solver
with symmetry breaking theory learning. Timeout was set to 60
minutes. The fastest time for each benchmark is highlighted.

As a further comparison against off-the-shelf solvers, Table 2
gives similar data for a selection of the benchmarks (the largest
three satisfiable problems, plus the slowest unsatisfiable problem
for n ∈ {12, 13, 14, 15}) solving using the CVC3 (whose integer
decision procedure is based on the Omega test [24]) and CVC4
(whose integer decision procudure is based on mixed integer linear
programming) [3] SMT solvers.

6.1 Discussion
Table 1 shows that the number of theory fails decreases across the
columns from left to right; this is expected since potential theory
fails are blocked by clauses learnt from previous theory fails. The
decrease in theory fails is significant and indicates that theory
learning and symmetry breaking theory learning are working well.

Adding theory learning pushes failure from the theory compo-
nent to the boolean component, so the second column shows an
increase in boolean assignment (it also includes the state restora-
tion overhead). With the reduction in search space achieved by

using symmetry breaking theory learning the number of boolean
assignments uniformly decreases.

In terms of time, the solver with symmetry breaking theory
learning is the fastest in all but three benchmarks. Two of these have
small search spaces and the overhead of constructing the symmetric
constraints does not pay. The other is (16, 28, 54), where the search
space is reduced (indicated by the smaller values for theory fails
and boolean assignments), but despite this the additional learned
inequalities are slowing the solver.

The comparison against off-the-shelf solvers given in Table 2
firstly shows that the differing underlying techniques used by the
theory solver component leads to varying results. The symmetry
breaking theory learning solver has considerably fewer theory
failures than the off-the-shelf solvers for all examples. The results
for CVC3 show that the underlying SAT solver performs fewer
boolean assignments than the Prolog coded solver used is this
work, whilst the results for CVC4 show that it uses many more
boolean assignments. In terms of speed, CVC4 is fastest for all
but one example reflecting the underlying speed of its operations,
whilst CVC3 and the symmetry breaking theory learning solver
vary considerably in comparison across the benchmarks.

7 RELATEDWORK
As already discussed, many SMT solvers use the Bellman-Ford
single source shortest path algorithm for integer differences. Other
approaches have been taken, for example [9] where simplex is used.

In solving the consecutive squares problem, [16] uses a dedicated
solver for the problem, whilst [27] uses the off-the-shelf SICStus
CLP(FD) solver arguing that this has all the machinery to realise a
good model for the problem. Recently, when considering compila-
tion of tabled constraints into SAT instances, [1] gives a model of
the problem using tabled constraints (similar to that used in this
paper); the largest non-trivial examples considered have n = 14 and
optimal solutions are not addressed.

Compiling constraint problems into SAT instances has recently
attracted attention, with [19] giving compilation strategies for finite
domain constraints and the Sugar and Azucar finite domain solvers
[29, 30] using SAT as their search engine. Modelling languages
such as MiniZinc aim to decouple modelling and search, so that the
constraint model can be compiled for a variety of different solvers,
including SAT [21, 28].

Symmetry breaking has long been acknowledged as an important
problem in constraint solving [11]. More recently, constraint solvers
incorporating learning have been developed, such as Chuffed [6, 7].
The current work can be viewed as a learning constraint solver
over the class of integer difference constraints.

8 CONCLUSIONS
This paper has shown how theory learning can be added to a gen-
eral purpose declarative SMT solver over quantifier-free integer
difference logic. In addition it has shown how such a solver can be
enhanced with symmetry breaking theory learning, in a problem
specific context, which promises to be a powerful new tactic. The
white box nature of the solver allows this kind of novel specialisa-
tion to be integrated with ease.
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Table 1: Benchmarking on the consecutive squares packing problem

instance result core learn learn + sym
(n,m1,m2) th bool time th bool time th bool time
(10,15,27) SAT 0 15 120 0 15 30 0 15 30
(10,20,20) UNSAT 66 158 520 25 289 280 14 225 210
(10,21,19) UNSAT 76 158 680 41 356 440 22 258 250
(10,22,18) UNSAT 50 98 360 32 231 340 18 170 190
(10,23,17) UNSAT 50 98 520 40 332 450 24 242 330
(11,19,27) SAT 148 323 1310 74 939 970 43 671 790
(11,23,23) UNSAT 66 158 530 25 289 280 14 225 200
(11,24,22) UNSAT 82 182 700 42 398 420 22 290 280
(11,25,21) UNSAT 106 214 1040 56 497 550 26 340 340
(11,26,20) SAT 83 183 940 68 727 830 40 534 700
(11,27,19) SAT 109 239 1240 61 759 820 35 532 580
(12,23,29) SAT 37 109 640 32 690 920 26 576 730
(12,26,26) UNSAT 66 158 590 25 289 450 14 225 250
(12,27,25) UNSAT 82 182 840 42 398 480 22 290 350
(12,28,24) UNSAT 124 256 1370 58 565 730 26 386 510
(12,29,23) SAT 244 509 3130 153 2273 2770 80 1486 1850
(12,30,22) UNSAT 1066 2218 11680 186 3879 4220 63 2759 2830
(12,31,21) UNSAT 1408 2986 16890 276 6074 6840 92 3977 4460
(13,22,38) SAT 401 816 6200 165 2967 4570 67 1629 2440
(13,29,29) UNSAT 66 158 710 25 289 440 14 225 290
(13,30,28) UNSAT 82 182 1010 42 398 580 22 290 400
(13,30,30) SAT 6 40 340 6 95 250 5 81 150
(13,31,27) UNSAT 124 256 1910 58 565 1060 26 386 540
(13,32,26) UNSAT 1782 3834 26140 501 10320 14080 139 5538 6990
(13,33,25) UNSAT 4265 9456 58820 451 14532 16830 92 10380 11300
(14,23,45) SAT 98 214 2150 64 1182 2650 35 731 1730
(14,32,32) UNSAT 66 158 830 25 289 450 14 225 340
(14,33,31) UNSAT 82 182 1200 42 398 680 22 290 470
(14,33,33) SAT 8 45 390 8 145 300 7 131 270
(14,34,30) UNSAT 124 256 2270 58 565 980 26 386 630
(14,34,32) SAT 50 128 1190 22 356 810 17 321 600
(14,35,29) UNSAT 1740 3714 30680 486 9918 15540 132 5307 7630
(14,35,31) SAT 35 96 900 32 484 930 27 442 810
(14,36,30) SAT 42 110 1190 38 716 1390 31 599 1050
(14,37,29) SAT 116 266 2130 66 1068 1830 37 742 1170
(14,38,28) SAT 3432 7991 59930 383 13615 18980 126 9795 13320
(14,39,27) SAT 4888 11047 76800 600 20134 28600 176 13643 18890
(14,40,26) UNSAT 7496 16334 112960 925 29425 43040 234 19379 27180
(14,41,25) UNSAT 5448 11542 86290 772 22982 34600 233 14923 21940
(15,23,55) SAT 204 431 4720 109 2088 5690 45 1066 4170
(15,36,36) SAT 14 57 600 14 330 740 12 286 720
(15,37,35) SAT 52 135 1480 24 382 820 19 347 760
(15,38,34) SAT 296 644 6290 114 2912 6120 73 2041 4380
(15,39,33) SAT 503 1105 11470 233 4746 9730 112 2886 6110
(15,40,32) SAT 2685 6060 56640 351 10936 17350 118 7813 11980
(15,41,31) UNSAT 13997 33374 287770 783 44687 65580 204 36258 51880
(15,42,30) UNSAT 12655 29654 232960 769 40713 60030 192 32267 46110
(15,43,29) UNSAT 9059 20794 144650 634 28627 42680 161 22614 32280
(16,27,56) SAT 8823 17788 209770 1557 48118 112410 286 23014 64510
(16,28,54) SAT 96322 195088 2441900 3421 265286 521430 471 203966 572230
(17,39,46) SAT 12338 29224 358030 1297 55636 119120 383 37481 77680
(18,31,69) SAT 6847 14715 220530 1100 41968 111610 230 20130 59140
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Table 2: Benchmarking on consecutive squares for CVC

CVC3 CVC4
instance result th bool time th bool time
(12,31,21) UNSAT 1046 2404 6354 5980 30716 3620
(13,33,25) UNSAT 549 2342 16988 5015 24533 4194
(14,40,26) UNSAT 1753 7819 48507 7863 41365 6879
(15,41,31) UNSAT 863 6186 38665 8505 60134 9134
(16,28,54) SAT 9872 35771 262132 25280 141959 32919
(17,39,46) SAT 664 1941 4595 20243 143473 17249
(18,31,69) SAT 8820 42261 526683 33781 175353 52735

The solver has been applied to the consecutive squares packing
problem and the results compare well to an approach using a similar
straightforward model [1]. Results for constraint solving are often
highly model dependent and approaches with more sophisticated
modelling [16, 27] solve more problems in this class. Future work
is to consider how such models might interact with the restricted
syntax of an SMT solver over integer differences.

A weakness of the solver is the state restoration approach to
learning that brings with it an overhead proportional to the number
of theory fails. However, as the problem size increases this number
drops as a proportion of the total number of fails and the overhead
becomes less problematic.

Symmetry breaking is a well recognised technique in constraint
modelling and the symmetry breaking theory learning approach
to SMT solving should be applicable to a wide range of problems
as well as the one tackled in this paper. This paper has taken a
problem specific approach, but future work would allow classes
of symmetries to be identified and broken. The comparison with
CVC3 and CVC4 shows that symmetry breaking theory learning
can reduce the number of theory failures considerably compared to
standard SMT solvers. Considering the limited range of heuristics
applied in the underlying Prolog SAT solver the comparison of
the solver times is pleasing. The symmetric clauses learned can
often block failures that would never be encountered and this is in
part the cause of the modest improvement in times compared to
the learning only solver. Improving learning so that only the most
effective clauses are learned and retained is also future work.

In conclusion, a powerful, flexible white box SMT solver over
integer difference constraints has been coded in only a few hundred
lines of Prolog code.
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