5 research outputs found

    Losing a winner: thermal stress and local pressures outweigh the positive effects of ocean acidification for tropical seagrasses

    No full text
    Seagrasses are globally important coastal habitat-forming species, yet it is unknown how seagrasses respond to the combined pressures of ocean acidification and warming of sea surface temperature. We exposed three tropical species of seagrass (Cymodocea serrulata, Halodule uninervis, and Zostera muelleri) to increasing temperature (21, 25, 30, and 35°C) and pCO (401, 1014, and 1949\ua0μatm) for 7\ua0wk in mesocosms using a controlled factorial design. Shoot density and leaf extension rates were recorded, and plant productivity and respiration were measured at increasing light levels (photosynthesis-irradiance curves) using oxygen optodes. Shoot density, growth, photosynthetic rates, and plant-scale net productivity occurred at 25°C or 30°C under saturating light levels. High pCO enhanced maximum net productivity for Z.\ua0muelleri, but not in other species. Z.\ua0muelleri was the most thermally tolerant as it maintained positive net production to 35°C, yet for the other species there was a sharp decline in productivity, growth, and shoot density at 35°C, which was exacerbated by pCO . These results suggest that thermal stress will not be offset by ocean acidification during future extreme heat events and challenges the current hypothesis that tropical seagrass will be a 'winner' under future climate change conditions

    Patterns, processes and vulnerability of Southern Ocean benthos: a decadal leap in knowledge and understanding

    No full text
    In the Southern Ocean, that is areas south of the Polar Front, long-term oceanographic cooling, geographic separation, development of isolating current and wind systems, tectonic drift and fluctuation of ice sheets amongst others have resulted in a highly endemic benthic fauna, which is generally adapted to the long-lasting, relatively stable environmental conditions. The Southern Ocean benthic ecosystem has been subject to minimal direct anthropogenic impact (compared to elsewhere) and thus presents unique opportunities to study biodiversity and its responses to environmental change. Since the beginning of the century, research under the Census of Marine Life and International Polar Year initiatives, as well as Scientific Committee of Antarctic Research biology programmes, have considerably advanced our understanding of the Southern Ocean benthos. In this paper, we evaluate recent progress in Southern Ocean benthic research and identify priorities for future research. Intense efforts to sample and describe the benthic fauna, coupled with coordination of information in global databases, have greatly enhanced understanding of the biodiversity and biogeography of the region. Some habitats, such as chemosynthetic systems, have been sampled for the first time, while application of new technologies and methods are yielding new insights into ecosystem structure and function. These advances have also highlighted important research gaps, notably the likely consequences of climate change. In a time of potentially pivotal environmental change, one of the greatest challenges is to balance conservation with increasing demands on the Southern Ocean's natural resources and services. In this context, the characterization of Southern Ocean biodiversity is an urgent priority requiring timely and accurate species identifications, application of standardized sampling and reporting procedures, as well as cooperation between disciplines and nations. © 2013 Springer-Verlag Berlin Heidelberg.0SCOPUS: re.jinfo:eu-repo/semantics/publishe

    Working Bibliography of Related Teaching and Learning Literature by Wabash Center Participants and Grant Recipients

    No full text
    corecore