45 research outputs found

    Force measurements during posterior calvarial vault osteodistraction : A novel measurement method

    Get PDF
    Posterior calvarial vault osteodistraction (PCVO) has become increasingly popular in the correction of craniosynostosis. When compared to cranioplasty, PCVO offers a shorter, less invasive operation, greater intracranial volume advancement and a lower rate of relapse. In general, distraction protocols are based primarily on clinical observations rather than systematic research. Faster distraction protocols may reduce complications. However, distraction protocols producing higher forces can increase complications. Thus, we need to understand these forces in order to improve distraction protocols and devices. We developed a force measurement method that can be used on PCVO devices. Here, we present preliminary data about the forces developed during PCVO. We measured the forces in four bicoronal craniosynostosis patients during PCVO. We observed a linear-like trend between the force increase and the distraction distance within distraction sessions. We also observed a step-wise force increase between distraction sessions and found that the distraction force relaxed rapidly shortly after the distraction session. The mean maximum pre distraction force for one distracter was 20.4 N, while the mean maximum end-distraction force for one distracter was 57.6 N. Our data suggests that current treatment protocols might be re-evaluated favouring shorter distraction distances and more frequent distraction sessions. (C) 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.Peer reviewe

    An affordable, quality-assured community-based system for high-resolution entomological surveillance of vector mosquitoes that reflects human malaria infection risk patterns.

    Get PDF
    ABSTRACT: BACKGROUND: More sensitive and scalable entomological surveillance tools are required to monitor low levels of transmission that are increasingly common across the tropics, particularly where vector control has been successful. A large-scale larviciding programme in urban Dar es Salaam, Tanzania is supported by a community-based (CB) system for trapping adult mosquito densities to monitor programme performance. Methodology An intensive and extensive CB system for routine, longitudinal, programmatic surveillance of malaria vectors and other mosquitoes using the Ifakara Tent Trap (ITT-C) was developed in Urban Dar es Salaam, Tanzania, and validated by comparison with quality assurance (QA) surveys using either ITT-C or human landing catches (HLC), as well as a cross-sectional survey of malaria parasite prevalence in the same housing compounds. RESULTS: Community-based ITT-C had much lower sensitivity per person-night of sampling than HLC (Relative Rate (RR) [95% Confidence Interval (CI)] = 0.079 [0.051, 0.121], P < 0.001 for Anopheles gambiae s.l. and 0.153 [0.137, 0.171], P < 0.001 for Culicines) but only moderately differed from QA surveys with the same trap (0.536 [0.406,0.617], P = 0.001 and 0.747 [0.677,0.824], P < 0.001, for An. gambiae or Culex respectively). Despite the poor sensitivity of the ITT per night of sampling, when CB-ITT was compared with QA-HLC, it proved at least comparably sensitive in absolute terms (171 versus 169 primary vectors caught) and cost-effective (153USversus187US versus 187US per An. gambiae caught) because it allowed more spatially extensive and temporally intensive sampling (4284 versus 335 trap nights distributed over 615 versus 240 locations with a mean number of samples per year of 143 versus 141). Despite the very low vectors densities (Annual estimate of about 170 An gambiae s.l bites per person per year), CB-ITT was the only entomological predictor of parasite infection risk (Odds Ratio [95% CI] = 4.43[3.027,7. 454] per An. gambiae or Anopheles funestus caught per night, P =0.0373). Discussion and conclusion CB trapping approaches could be improved with more sensitive traps, but already offer a practical, safe and affordable system for routine programmatic mosquito surveillance and clusters could be distributed across entire countries by adapting the sample submission and quality assurance procedures accordingly

    Accommodating user diversity for in-store shopping behavior recognition

    No full text

    Effect of Constant and Cyclic Current Stressing on the Evolution of Intermetallic Compound Layers

    No full text
    In this paper the effects of constant and cyclic power loads on the evolution of interfacial reaction layers in lead-free solder interconnections are presented. Firstly, the differences in the growth behavior of intermetallic compound (IMC) layers at the cathode and anode sides of the interconnections are rationalized. This is done by considering the changes in the intrinsic fluxes of elements owing to electromigration as well as taking into account the fact that the growth of Cu3Sn and Cu6Sn5 are coupled via interfacial reactions. In this way, better understanding of the effect of electron flux on the growth of each individual layer in the Cu-Sn system can be achieved. Secondly, it is shown that there is a distinct difference between steady-state current stressing (constant current, constant temperature) and power cycling with alternating on- and off-cycle periods (accompanied by a change of temperature). The reasons behind the observed differences are subsequently discussed. Finally, special care is taken to ensure that the current densities are chosen in such a way that there is no risk for even partial melting of the solder interconnections

    Low-temperature die attach for power components: Cu-Sn-In solid-liquid interdiffusion bonding

    No full text
    Funding Information: This work has been funded by iRel40. iRel40 is a European co-funded innovation project that has been granted by the ECSEL Joint Undertaking (JU) under grant agreement No 876659. The funding of the project comes from the Horizon 2020 research programme and participating countries. National funding is provided by Germany, Austria, Belgium, Finland (Innovation Funding Agency, Business Finland), France, Italy, the Netherlands, Slovakia, Spain, Sweden, and Turkey. Publisher Copyright: © 2022 IEEE. | openaire: EC/HE/876659/EU//iRel40Based on the finite element (FE) simulations done in this work, lowering the bonding temperature significantly decreases the bonding induced residual stresses. Therefore, low temperature Cu-Sn-In SLID process was utilized to bond Si to Si and Si to sapphire under various bonding conditions. The microstructural evolution and the (thermo-) mechanical properties of the joints were studied. The results showed that the Cu-Sn-In SLID bonds composed of a single Cu6(Sn, In)5 IMC phase with high joint strength. Furthermore, the hardness and Young's modulus of Cu6(Sn, In)5 formed in the SLID bonding were measured to be slightly higher than that of binary Cu6Sn5.Peer reviewe
    corecore