120 research outputs found

    Objective functions for comparing simulations with insect trap catch data

    Get PDF
    Targeted surveillance of high risk invasion sites using insect traps is becoming an important tool in border biosecurity, aiding in early detection and subsequent monitoring of eradication attempts. The mark-release-recapture technique is widely used to study the dispersal of insects, and to generate unbiased estimates of population density. It may also be used in the biosecurity context to quantify the efficacy of surveillance and eradication monitoring systems. Marked painted apple moths were released at three different locations in Auckland, New Zealand over six weeks during a recent eradication campaign. The results of the mark-release-recapture experiment were used to parameterise a process-based mechanistic dispersal model in order to understand the moth dispersal pattern in relation to wind patterns, and to provide biosecurity agencies with an ability to predict moth dispersal patterns. A genetic algorithm was used to fit some model parameters. Different objective functions were tested: 1) Cohen’s Kappa test, 2) the sum of squared difference on trap catches, 3) the sum of squared difference weighted by distance from the release site, 4) the sum of squared difference weighted on distance between best-fit paired data. The genetic algorithm proved to be a powerful fitting method, but the model results were highly dependant on the objective function used. Objective functions for fitting spatial data need to characterise spatial patterns as well as density (ie. recapture rate). For fitting stochastic models to datasets derived from stochastic spatial processes, objective functions need to accommodate the fact that a perfect fit is practically impossible, even if the models are the same. Applied on mark-release-recapture data, the Cohen’s Kappa test and the sum of squared difference on trap catches captured respectively the distance component of the spatial pattern and the density component adequately but failed to capture both requirements whereas the sum of squared difference weighted by distance from the release site did. However, in order to integrate the stochastic error generated by the model underlying stochastic process, only the sum of squared difference weighted on distance between best-fit paired data was adequate. The relevance of each of the fitting methods is detailed, and their respective strengths and weaknesses are discussed in relation to their ability to capture the spatial patterns of insect recaptures

    Integrating pest population models with biophysical crop models to better represent the farming system

    Get PDF
    Farming systems frameworks such as the Agricultural Production Systems simulator (APSIM) represent fluxes through the soil, plant and atmosphere of the system well, but do not generally consider the biotic constraints that function within the system. We designed a method that allowed population models built in DYMEX to interact with APSIM. The simulator engine component of the DYMEX population-modelling platform was wrapped within an APSIM module allowing it to get and set variable values in other APSIM models running in the simulation. A rust model developed in DYMEX is used to demonstrate how the developing rust population reduces the crop's green leaf area. The success of the linking process is seen in the interaction of the two models and how changes in rust population on the crop's leaves feedback to the APSIM crop modifying the growth and development of the crop's leaf area. This linking of population models to simulate pest populations and biophysical models to simulate crop growth and development increases the complexity of the simulation, but provides a tool to investigate biotic constraints within farming systems and further moves APSIM towards being an agro-ecological framework

    Integrating pest population models with biophysical crop models to better represent the farming system

    Get PDF
    Farming systems frameworks such as the Agricultural Production Systems simulator (APSIM) represent fluxes through the soil, plant and atmosphere of the system well, but do not generally consider the biotic constraints that function within the system. We designed a method that allowed population models built in DYMEX to interact with APSIM. The simulator engine component of the DYMEX population-modelling platform was wrapped within an APSIM module allowing it to get and set variable values in other APSIM models running in the simulation. A rust model developed in DYMEX is used to demonstrate how the developing rust population reduces the crop's green leaf area. The success of the linking process is seen in the interaction of the two models and how changes in rust population on the crop's leaves feedback to the APSIM crop modifying the growth and development of the crop's leaf area. This linking of population models to simulate pest populations and biophysical models to simulate crop growth and development increases the complexity of the simulation, but provides a tool to investigate biotic constraints within farming systems and further moves APSIM towards being an agro-ecological framework

    Climate Change and the Potential Distribution of an Invasive Shrub, Lantana camara L

    Get PDF
    The threat posed by invasive species, in particular weeds, to biodiversity may be exacerbated by climate change. Lantana camara L. (lantana) is a woody shrub that is highly invasive in many countries of the world. It has a profound economic and environmental impact worldwide, including Australia. Knowledge of the likely potential distribution of this invasive species under current and future climate will be useful in planning better strategies to manage the invasion. A process-oriented niche model of L. camara was developed using CLIMEX to estimate its potential distribution under current and future climate scenarios. The model was calibrated using data from several knowledge domains, including phenological observations and geographic distribution records. The potential distribution of lantana under historical climate exceeded the current distribution in some areas of the world, notably Africa and Asia. Under future scenarios, the climatically suitable areas for L. camara globally were projected to contract. However, some areas were identified in North Africa, Europe and Australia that may become climatically suitable under future climates. In South Africa and China, its potential distribution could expand further inland. These results can inform strategic planning by biosecurity agencies, identifying areas to target for eradication or containment. Distribution maps of risk of potential invasion can be useful tools in public awareness campaigns, especially in countries that have been identified as becoming climatically suitable for L. camara under the future climate scenarios

    Predicting Invasive Fungal Pathogens Using Invasive Pest Assemblages: Testing Model Predictions in a Virtual World

    Get PDF
    Predicting future species invasions presents significant challenges to researchers and government agencies. Simply considering the vast number of potential species that could invade an area can be insurmountable. One method, recently suggested, which can analyse large datasets of invasive species simultaneously is that of a self organising map (SOM), a form of artificial neural network which can rank species by establishment likelihood. We used this method to analyse the worldwide distribution of 486 fungal pathogens and then validated the method by creating a virtual world of invasive species in which to test the SOM. This novel validation method allowed us to test SOM's ability to rank those species that can establish above those that can't. Overall, we found the SOM highly effective, having on average, a 96–98% success rate (depending on the virtual world parameters). We also found that regions with fewer species present (i.e. 1–10 species) were more difficult for the SOM to generate an accurately ranked list, with success rates varying from 100% correct down to 0% correct. However, we were able to combine the numbers of species present in a region with clustering patterns in the SOM, to further refine confidence in lists generated from these sparsely populated regions. We then used the results from the virtual world to determine confidences for lists generated from the fungal pathogen dataset. Specifically, for lists generated for Australia and its states and territories, the reliability scores were between 84–98%. We conclude that a SOM analysis is a reliable method for analysing a large dataset of potential invasive species and could be used by biosecurity agencies around the world resulting in a better overall assessment of invasion risk

    Potential Geographic Distribution of Brown Marmorated Stink Bug Invasion (Halyomorpha halys)

    Get PDF
    BACKGROUND: The Brown Marmorated Stink Bug (BMSB), Halyomorpha halys (Stül) (Hemiptera: Pentatomidae), native to Asia, is becoming an invasive species with a rapidly expanding range in North America and Europe. In the US, it is a household pest and also caused unprecedented damage to agriculture crops. Exploring its climatic limits and estimating its potential geographic distribution can provide critical information for management strategies. METHODOLOGY/PRINCIPALS: We used direct climate comparisons to explore the climatic niche occupied by native and invasive populations of BMSB. Ecological niche modelings based on the native range were used to anticipate the potential distribution of BMSB worldwide. Conversely, niche models based on the introduced range were used to locate the original invasive propagates in Asia. Areas with high invasion potential were identified by two niche modeling algorithms (i.e., Maxent and GARP). CONCLUSIONS/SIGNIFICANCE: Reduced dimensionality of environmental space improves native model transferability in the invade area. Projecting models from invasive population back to native distributional areas offers valuable information on the potential source regions of the invasive populations. Our models anticipated successfully the current disjunct distribution of BMSB in the US. The original propagates are hypothesized to have come from northern Japan or western Korea. High climate suitable areas at risk of invasion include latitudes between 30°-50° including northern Europe, northeastern North America, southern Australia and the North Island of New Zealand. Angola in Africa and Uruguay in South America also showed high climate suitability

    Screening potential pests of Nordic coniferous forests associated with trade in ornamental plants

    Get PDF
    Plant pests moved along with the trade in ornamental plants could pose a threat to forests. In this study plant pests potentially associated with this pathway were screened to identify pests that could pose a high risk to the coniferous forests of Finland, Sweden and Norway. Specifically, the aim was to find pests that potentially could fulfil the criteria to become regulated as quarantine pests. EPPO’s commodity study approach, which includes several screening steps, was used to identify the pests that are most likely to become significant pests of Picea abies or Pinus sylvestris. From an initial list of 1062 pests, 65 pests were identified and ranked using the FinnPRIO model, resulting in a top list of 14 pests, namely Chionaspis pinifoliae, Coleosporium asterum s.l., Cytospora kunzei, Dactylonectria macrodidyma, Gnathotrichus retusus, Heterobasidion irregulare, Lambdina fiscellaria, Orgyia leucostigma, Orthotomicus erosus, Pseudocoremia suavis, Tetropium gracilicorne, Toumeyella parvicornis, Truncatella hartigii and Xylosandrus germanus. The rankings of the pests, together with the collected information, can be used to prioritize pests and pathways for further assessment

    Effects of the Training Dataset Characteristics on the Performance of Nine Species Distribution Models: Application to Diabrotica virgifera virgifera

    Get PDF
    Many distribution models developed to predict the presence/absence of invasive alien species need to be fitted to a training dataset before practical use. The training dataset is characterized by the number of recorded presences/absences and by their geographical locations. The aim of this paper is to study the effect of the training dataset characteristics on model performance and to compare the relative importance of three factors influencing model predictive capability; size of training dataset, stage of the biological invasion, and choice of input variables. Nine models were assessed for their ability to predict the distribution of the western corn rootworm, Diabrotica virgifera virgifera, a major pest of corn in North America that has recently invaded Europe. Twenty-six training datasets of various sizes (from 10 to 428 presence records) corresponding to two different stages of invasion (1955 and 1980) and three sets of input bioclimatic variables (19 variables, six variables selected using information on insect biology, and three linear combinations of 19 variables derived from Principal Component Analysis) were considered. The models were fitted to each training dataset in turn and their performance was assessed using independent data from North America and Europe. The models were ranked according to the area under the Receiver Operating Characteristic curve and the likelihood ratio. Model performance was highly sensitive to the geographical area used for calibration; most of the models performed poorly when fitted to a restricted area corresponding to an early stage of the invasion. Our results also showed that Principal Component Analysis was useful in reducing the number of model input variables for the models that performed poorly with 19 input variables. DOMAIN, Environmental Distance, MAXENT, and Envelope Score were the most accurate models but all the models tested in this study led to a substantial rate of mis-classification
    • …
    corecore