45 research outputs found

    Chironomidae fauna of springs in Iceland: Assessing the ecological relevance behind Tuxen’s spring classification

    Get PDF
    In 1937, S.L. Tuxen studied the animal community of hot springs in Iceland, and classified springs according to their relative temperature into cold, tepid, and hot. Eighty years after Tuxen’s study, we revisited some of the hot springs in Skagafjörður, Northern Iceland. Our aim was to compare the invertebrate community of 1937 and today, and to assess the stability of hot spring habitats over the years. To test Tuxen’s spring classification on an ecological basis, we furthermore collected chironomid larvae from 24 springs of a broad range of temperature, with samples taken both at the surface area of the spring and at the groundwater level. The chironomid species composition of hot springs differed from that of cold and tepid springs. Whereas Cricotopus sylvestris, Arctopelopia sp., and Procladius sp. characterised the chironomid community in Icelandic hot springs, cold and tepid springs were dominated by Eukiefferiella minor, Orthocladius frigidus and Diamesa spp. Community composition analyses and the exclusive occurrence of taxa in one of the temperature classes validated the ecological relevance of Tuxen’s spring classification for the chironomid species community. Both environmental parameters and invertebrate community of Icelandic hot springs seem to be the same as 80 years ago. Although springs have the potential to provide stable habitats, they are currently under high anthropogenic pressure, and should be increasingly considered in nature conservation.

    Re-identification of individuals from images using spot constellations : a case study in Arctic charr (Salvelinus alpinus)

    Get PDF
    The long-term monitoring of Arctic charr in lava caves is funded by the Icelandic Research Fund, RANNÍS (research grant nos. 120227 and 162893). E.A.M. was supported by the Icelandic Research Fund, RANNÍS (grant no. 162893) and NERC research grant awarded to M.B.M. (grant no. NE/R011109/1). M.B.M. was supported by a University Research Fellowship from the Royal Society (London). C.A.L. and B.K.K. were supported by Hólar University, Iceland. The Titan Xp GPU used for this research was donated to K.T. by the NVIDIA Corporation.The ability to re-identify individuals is fundamental to the individual-based studies that are required to estimate many important ecological and evolutionary parameters in wild populations. Traditional methods of marking individuals and tracking them through time can be invasive and imperfect, which can affect these estimates and create uncertainties for population management. Here we present a photographic re-identification method that uses spot constellations in images to match specimens through time. Photographs of Arctic charr (Salvelinus alpinus) were used as a case study. Classical computer vision techniques were compared with new deep-learning techniques for masks and spot extraction. We found that a U-Net approach trained on a small set of human-annotated photographs performed substantially better than a baseline feature engineering approach. For matching the spot constellations, two algorithms were adapted, and, depending on whether a fully or semi-automated set-up is preferred, we show how either one or a combination of these algorithms can be implemented. Within our case study, our pipeline both successfully identified unmarked individuals from photographs alone and re-identified individuals that had lost tags, resulting in an approximately 4 our multi-step pipeline involves little human supervision and could be applied to many organisms.Publisher PDFPeer reviewe

    Gene expression in the phenotypically plastic Arctic charr (Salvelinus alpinus): A focus on growth and ossification at early stages of development

    Get PDF
    Publisher's version (útgefin grein)Gene expression during development shapes the phenotypes of individuals. Although embryonic gene expression can have lasting effects on developmental trajectories, few studies consider the role of maternal effects, such as egg size, on gene expression. Using qPCR, we characterize relative expression of 14 growth and/or skeletal promoting genes across embryonic development in Arctic charr (Salvelinus alpinus). We test to what extent their relative expression is correlated with egg size and size at early life‐stages within the study population. We predict smaller individuals to have higher expression of growth and skeletal promoting genes, due to less maternal resources (i.e., yolk) and prioritization of energy toward ossification. We found expression levels to vary across developmental stages and only three genes (Mmp9, Star, and Sgk1) correlated with individual size at a given developmental stage. Contrary to our hypothesis, expression of Mmp9 and Star showed a non‐linear relationship with size (at post fertilization and hatching, respectively), whilst Sgk1 was higher in larger embryos at hatching. Interestingly, these genes are also associated with craniofacial divergence of Arctic charr morphs. Our results indicate that early life‐stage variation in gene expression, concomitant to maternal effects, can influence developmental plasticity and potentially the evolution of resource polymorphism in fishes.We thank John Postlethwait for his valuable comments on the manuscript. This research was funded by the Icelandic Research Fund, Rannis (grant number 141360 to CAL et al., and grant number 173814–051 to SVB).Peer Reviewe

    What is a fish? The life and legend of David L.G. Noakes

    Get PDF
    David Lloyd George Noakes (1942–2020) is best known for his insatiable curiosity, his quick wit and dry sense of humor, his scientific contributions to the field of animal behaviour, and his ability to form and maintain long-lasting connections. His research interests were vast but remained grounded in early life history, behaviour, social behaviour, the evolution of behaviour, behavioural genetics, and evolutionary ecology. David had a remarkable ability to establish and maintain strong connections within the international academic community. David was also internationally recognized for his numerous contributions as a scientific editor, promoting accessibility to the international community that he served. We memorialize David’s legacy in this tribute article, ensuring that his accomplishments and the momentous impact he had on the scientific community are not soon forgotten

    Geothermal stickleback populations prefer cool water despite multigenerational exposure to a warm environment

    Get PDF
    Given the threat of climate change to biodiversity, a growing number of studies are investigating the potential for organisms to adapt to rising temperatures. Earlier work has predicted that physiological adaptation to climate change will be accompanied by a shift in temperature preferences, but empirical evidence for this is lacking. Here, we test whether exposure to different thermal environments has led to changes in preferred temperatures in the wild. Our study takes advantage of a “natural experiment” in Iceland, where freshwater populations of threespine sticklebacks (Gasterosteus aculeatus) are found in waters warmed by geothermal activity year-round (warm habitats), adjacent to populations in ambient-temperature lakes (cold habitats). We used a shuttle-box approach to measure temperature preferences of wild-caught sticklebacks from three warm–cold population pairs. Our prediction was that fish from warm habitats would prefer higher water temperatures than those from cold habitats. We found no support for this, as fish from both warm and cold habitats had an average preferred temperature of 13°C. Thus, our results challenge the assumption that there will be a shift in ectotherm temperature preferences in response to climate change. In addition, since warm-habitat fish can persist at relatively high temperatures despite a lower-temperature preference, we suggest that preferred temperature alone may be a poor indicator of a population's adaptive potential to a novel thermal environment

    Seasonal variation in the invertebrate community and diet of a top fish predator in a thermally stable spring

    Get PDF
    Many life-history events in aquatic invertebrates are triggered by seasonal changes in water temperature, but other ecological factors may be important as well. To rule out the confounding effects of changing water temperature, we studied the seasonal dynamics of an aquatic invertebrate community and their effect on a top fish predator in a thermally stable freshwater spring in South Iceland. We sampled benthic invertebrates five times over a year and conducted a mark-recapture study on the top predator in the system, small benthic Arctic charr, Salvelinus alpinus (L.). We assessed variation in diet composition and feeding preferences by calculating the electivity and individual specialisation of each fish at each sampling time. There was a clear separation of winter and summer communities for the benthic invertebrates. The variation in prey availability was also reflected in the fish diet, with higher feeding selectivity in summer than in winter for the highly abundant Chironomidae larvae. In contrast, individual specialisation as a measure of intrapopulation niche variation was higher in winter when prey availability was lower. We furthermore found that groundwater amphipods might play an important role in the winter diet of spring-dwelling Arctic charr. In conclusion, seasonal variation in the invertebrate community is an important factor to consider and has the potential to alter the phenotype (e.g. growth rates) and behaviour (e.g. feeding preferences) of higher trophic levels

    A warmer environment can reduce sociability in an ectotherm

    Get PDF
    The costs and benefits of being social vary with environmental conditions, so individuals must weigh the balance between these trade-offs in response to changes in the environment. Temperature is a salient environmental factor that may play a key role in altering the costs and benefits of sociality through its effects on food availability, predator abundance, and other ecological parameters. In ectotherms, changes in temperature also have direct effects on physiological traits linked to social behaviour, such as metabolic rate and locomotor performance. In light of climate change, it is therefore important to understand the potential effects of temperature on sociality. Here, we took the advantage of a ‘natural experiment’ of threespine sticklebacks from contrasting thermal environments in Iceland: geothermally warmed water bodies (warm habitats) and adjacent ambient-temperature water bodies (cold habitats) that were either linked (sympatric) or physically distinct (allopatric). We first measured the sociability of wild-caught adult fish from warm and cold habitats after acclimation to a low and a high temperature. At both acclimation temperatures, fish from the allopatric warm habitat were less social than those from the allopatric cold habitat, whereas fish from sympatric warm and cold habitats showed no differences in sociability. To determine whether differences in sociability between thermal habitats in the allopatric population were heritable, we used a common garden breeding design where individuals from the warm and the cold habitat were reared at a low or high temperature for two generations. We found that sociability was indeed heritable but also influenced by rearing temperature, suggesting that thermal conditions during early life can play an important role in influencing social behaviour in adulthood. By providing the first evidence for a causal effect of rearing temperature on social behaviour, our study provides novel insights into how a warming world may influence sociality in animal populations.publishedVersio

    A warmer environment can reduce sociability in an ectotherm

    Get PDF
    The costs and benefits of being social vary with environmental conditions, so individuals must weigh the balance between these trade-offs in response to changes in the environment. Temperature is a salient environmental factor that may play a key role in altering the costs and benefits of sociality through its effects on food availability, predator abundance, and other ecological parameters. In ectotherms, changes in temperature also have direct effects on physiological traits linked to social behaviour, such as metabolic rate and locomotor performance. In light of climate change, it is therefore important to understand the potential effects of temperature on sociality. Here, we took the advantage of a ‘natural experiment’ of threespine sticklebacks from contrasting thermal environments in Iceland: geothermally warmed water bodies (warm habitats) and adjacent ambient-temperature water bodies (cold habitats) that were either linked (sympatric) or physically distinct (allopatric). We first measured the sociability of wild-caught adult fish from warm and cold habitats after acclimation to a low and a high temperature. At both acclimation temperatures, fish from the allopatric warm habitat were less social than those from the allopatric cold habitat, whereas fish from sympatric warm and cold habitats showed no differences in sociability. To determine whether differences in sociability between thermal habitats in the allopatric population were heritable, we used a common garden breeding design where individuals from the warm and the cold habitat were reared at a low or high temperature for two generations. We found that sociability was indeed heritable but also influenced by rearing temperature, suggesting that thermal conditions during early life can play an important role in influencing social behaviour in adulthood. By providing the first evidence for a causal effect of rearing temperature on social behaviour, our study provides novel insights into how a warming world may influence sociality in animal populations

    A warmer environment can reduce sociability in an ectotherm

    Get PDF
    The costs and benefits of being social vary with environmental conditions, so individuals must weigh the balance between these trade-offs in response to changes in the environment. Temperature is a salient environmental factor that may play a key role in altering the costs and benefits of sociality through its effects on food availability, predator abundance, and other ecological parameters. In ectotherms, changes in temperature also have direct effects on physiological traits linked to social behaviour, such as metabolic rate and locomotor performance. In light of climate change, it is therefore important to understand the potential effects of temperature on sociality. Here, we took the advantage of a 'natural experiment' of threespine sticklebacks from contrasting thermal environments in Iceland: geothermally warmed water bodies (warm habitats) and adjacent ambient-temperature water bodies (cold habitats) that were either linked (sympatric) or physically distinct (allopatric). We first measured the sociability of wild-caught adult fish from warm and cold habitats after acclimation to a low and a high temperature. At both acclimation temperatures, fish from the allopatric warm habitat were less social than those from the allopatric cold habitat, whereas fish from sympatric warm and cold habitats showed no differences in sociability. To determine whether differences in sociability between thermal habitats in the allopatric population were heritable, we used a common garden breeding design where individuals from the warm and the cold habitat were reared at a low or high temperature for two generations. We found that sociability was indeed heritable but also influenced by rearing temperature, suggesting that thermal conditions during early life can play an important role in influencing social behaviour in adulthood. By providing the first evidence for a causal effect of rearing temperature on social behaviour, our study provides novel insights into how a warming world may influence sociality in animal populations.</p

    Testing the predictability of morphological evolution in contrasting thermal environments

    Get PDF
    Gaining the ability to predict population responses to climate change is a pressing concern. Using a “natural experiment,” we show that testing for divergent evolution in wild populations from contrasting thermal environments provides a powerful approach, and likely an enhanced predictive power for responses to climate change. Specifically, we used a unique study system in Iceland, where freshwater populations of threespine sticklebacks (Gasterosteus aculeatus) are found in waters warmed by geothermal activity, adjacent to populations in ambient-temperature water. We focused on morphological traits across six pairs from warm and cold habitats. We found that fish from warm habitats tended to have a deeper mid-body, a subterminally orientated jaw, steeper craniofacial profile, and deeper caudal region relative to fish from cold habitats. Our common garden experiment showed that most of these differences were heritable. Population age did not appear to influence the magnitude or type of thermal divergence, but similar types of divergence between thermal habitats were more prevalent across allopatric than sympatric population pairs. These findings suggest that morphological divergence in response to thermal habitat, despite being relatively complex and multivariate, are predictable to a degree. Our data also suggest that the potential for migration of individuals between different thermal habitats may enhance nonparallel evolution and reduce our ability to predict responses to climate change
    corecore