21 research outputs found

    Influence of Richness and Seeding Density on Invasion Resistance in Experimental Tallgrass Prairie Restorations

    Get PDF
    In recent years, agricultural producers and non-governmental organizations and agencies have restored thousands of hectares of cropland to grassland in the Great Plains of the United States. However, little is known about the relationships between richness and seeding density in these restorations and resistance to invasive plant species. We assessed the effects of richness and seeding density on resistance to invasive and other unseeded plant species in experimental tallgrass prairie plots in central Nebraska. In 2006, twenty-four 55 m × 55 m plots were planted with six replicates in each of four treatments: high richness (97 species typically planted by The Nature Conservancy), at low and high seeding densities, and low richness (15 species representing a typical Conservation Reserve Program mix, CP25), at low and high seeding densities. There was a significant negative relationship between richness and basal cover of unseeded perennial forbs/legumes and unseeded perennial/annual grasses, abundance of bull thistle (Cirsium vulgare), and the number of inflorescences removed from smooth brome (Bromus inermis) transplants. Invasion resistance may have been higher in the high richness treatments because of the characteristics of the dominant species in these plots or because of greater interspecific competition for limiting resources among forbs/legumes with neighboring plants belonging to the same functional group. Seeding density was not important in affecting invasion resistance, except in the cover of unseeded grasses. Increasing seed mix richness may be more effective than increasing the seeding density for decreasing invasion by unseeded perennial species, bull thistle, and smooth brome

    Responses of predatory invertebrates to seeding density and plantspecies richness in experimental tallgrass prairie restorations

    Get PDF
    In recent decades, agricultural producers and non-governmental organizations have restored thousandsof hectares of former cropland in the central United States with native grasses and forbs. However,the ability of these grassland restorations to attract predatory invertebrates has not been well docu-mented, even though predators provide an important ecosystem service to agricultural producers bynaturally regulating herbivores. This study assessed the effects of plant richness and seeding density onthe richness and abundance of surface-dwelling (ants, ground beetles, and spiders) and aboveground(ladybird beetles) predatory invertebrates. In the spring of 2006, twenty-four 55 m × 55 m-plots wereplanted to six replicates in each of four treatments: high richness (97 species typically planted by TheNature Conservancy), at low and high seeding densities, and low richness (15 species representing a typ-ical Natural Resources Conservation Service Conservation Reserve Program mix, CP25), at low and highseeding densities. Ants, ground beetles, and spiders were sampled using pitfall traps and ladybird beetleswere sampled using sweep netting in 2007–2009. The abundance of ants, ground beetles, and spidersshowed no response to seed mix richness or seeding density but there was a significant positive effect ofrichness on ladybird beetle abundance. Seeding density had a significant positive effect on ground beetleand spider species richness and Shannon–Weaver diversity. These results may be related to differencesin the plant species composition and relative amount of grass basal cover among the treatments ratherthan richness

    Longitudinal Analysis of the Temporal Evolution of Acinetobacter baumannii Strains in Ohio, USA, by Using Rapid Automated Typing Methods

    Get PDF
    Genotyping methods are essential to understand the transmission dynamics of Acinetobacter baumannii. We examined the representative genotypes of A. baumannii at different time periods in select locations in Ohio, using two rapid automated typing methods: PCR coupled with electrospray ionization mass spectrometry (PCR/ESI-MS), a form of multi-locus sequence typing (MLST), and repetitive-sequence-based-PCR (rep-PCR). Our analysis included 122 isolates from 4 referral hospital systems, in 2 urban areas of Ohio. These isolates were associated with outbreaks at 3 different time periods (1996, 2000 and 2005–2007). Type assignments of PCR/ESI-MS and rep-PCR were compared to each other and to worldwide (WW) clone types. The discriminatory power of each method was determined using the Simpson's index of diversity (DI). We observed that PCR/ESI-MS sequence type (ST) 14, corresponding to WW clone 3, predominated in 1996, whereas ST 12 and 14 co-existed in the intermediate period (2000) and ST 10 and 12, belonging to WW clone 2, predominated more recently in 2007. The shift from WW clone 3 to WW clone 2 was accompanied by an increase in carbapenem resistance. The DI was approximately 0.74 for PCR/ESI-MS, 0.88 for rep-PCR and 0.90 for the combination of both typing methods. We conclude that combining rapid automated typing methods such as PCR/ESI-MS and rep-PCR serves to optimally characterize the regional molecular epidemiology of A. baumannii. Our data also sheds light on the changing sequence types in an 11 year period in Northeast Ohio

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    The relationship between diversity, seeding density, and ecological functions in tallgrass prairie restorations

    No full text
    In recent decades, agricultural producers and conservation organizations and agencies have converted thousands of hectares of cropland to grassland in the Great Plains. Although high diversity seed mixes can cost up to five to ten times as much as low diversity seed mixes, little information is available on the ecological functions that may result from the added diversity. Restorations that maintain critical ecological functions and services may help maintain functional and resilient working landscapes. In this dissertation I assessed the effects of tallgrass prairie plant diversity and seeding density on the provision of ecological functions and services including: 1) resistance to invasive plant species, 2) abundance and diversity of predatory invertebrates, 3) herbivory levels on two perennial forbs, and 4) soil development. In the spring of 2006, twenty-four 55m2-plots were planted to six replicates in each of four treatments: high diversity sites of 97 species typically planted by The Nature Conservancy planted at a lower seeding density, high diversity sites at twice this seeding rate, and low diversity sites using a Natural Resources Conservation Service (NRCS) Conservation Reserve Program mix (CP25; 15 species), at low and high seeding densities. This study is among the first to compare the ecological functions provided by grassland seed mixes commonly used by practitioners. Increasing plant community diversity was found to be more important than increasing seeding density for enhancing resistance to invasion by unsown perennial forbs and legumes and in reducing inflorescence production by Bromus inermis. There was a significant positive relationship between plant community diversity and the abundance of coccinellid beetles, but the abundance of ants, carabid beetles, and spiders showed no significant response to diversity or seeding density. Seeding density had a positive effect on carabid beetle and spider species richness and Shannon-Weaver diversity. Year was the main significant effect for explaining levels of herbivory damage in Ratibida columnifera and Solidago canadensis and there was a significant negative relationship between diversity and levels of soil nitrate. Overall, results indicate increasing diversity may be more important than increasing seeding density for provision of the ecological functions studied

    Plant-Feeding Hemiptera and Orthoptera Communities in Native and Restored Mesic Tallgrass Prairies

    Get PDF
    Aboveground Hemiptera and Orthoptera communities were compared among three native and three restored mesic tallgrass prairies along the Platte River in central Nebraska to assess both the relative success of restored sites and the relationship between insect and plant communities. Hemiptera and Orthoptera were sampled using sweep nets in early June, mid-July, and mid-August 2000. Plant species composition was assessed in early June and mid-August. A total of 89 Auchenorrhyncha (71 Cicadellidae, 15 Fulgoroidea, and 3 Membracidae) and 23 orthopterans (15 Acrididae and 8 Tettigoniidae) were collected. Eighty-five plant species were observed in combined study sites. Shannon diversity was significantly higher at restored prairie for Cicadellidae (H9 ¼ 1.38), Fulgoroidea (H9 ¼ 0.796), and Membracidae (H9 ¼ 0.290), which comprised the majority of individual insects collected, but significantly higher at native prairie for Acrididae (H9 ¼ 0.560) and Tettigoniidae (H9 ¼ 0.480) (p • 0.05). Species richness was comparable except for Acrididae which were significantly higher in restored prairie. Density of insects generally followed species diversity but was only significantly higher in restored areas for Membracidae. The number of remnantdependent species collected was comparable for both native prairie (n ¼ 15) and restored prairie (n ¼ 15). These results suggest that, at least for Hemiptera, differences in insect communities between native and restored prairie may best be explained by the presence of insect host plants rather than by whether a site is native or restored

    FIVE NEW RECORDS OF ANTS (HYMENOPTERA: FORMICIDAE) FOR NEBRASKA

    Get PDF
    Ants are ubiquitous and influential organisms in terrestrial ecosystems. About 1,000 ant species occur in North America, where they are found in nearly every habitat (Fisher and Cover 2007). Ants are critical to ecological processes and structure. Ants affect soils via tunneling activity (Baxter and Hole 1967), disperse plant seeds (Lengyel et al. 2009), prey upon a variety of insects and other invertebrates (Way and Khoo 1992, Folgarait 1998), are often effective primary consumers through their prodigious consumption of floral and especially extrafloral nectar, and honeydew (Tobin 1994), and serve as prey for invertebrates (Gotelli 1996, Gastreich 1999) and vertebrates (Reiss 2001)
    corecore