7 research outputs found

    Properties of Parallel Tetramolecular G-Quadruplex Carrying N-Acetylgalactosamine as Potential Enhancer for Oligonucleotide Delivery to Hepatocytes

    Full text link
    The development of oligonucleotide conjugates for in vivo targeting is one of the most exciting areas for oligonucleotide therapeutics. A major breakthrough in this field was the development of multifunctional GalNAc-oligonucleotides with high affinity to asialoglycoprotein receptors (ASGPR) that directed therapeutic oligonucleotides to hepatocytes. In the present study, we explore the use of G-rich sequences functionalized with one unit of GalNAc at the 3′-end for the formation of tetrameric GalNAc nanostructures upon formation of a parallel G-quadruplex. These compounds are expected to facilitate the synthetic protocols by providing the multifunctionality needed for the binding to ASGPR. To this end, several G-rich oligonucleotides carrying a TGGGGGGT sequence at the 3′-end functionalized with one molecule of N-acetylgalactosamine (GalNAc) were synthesized together with appropriate control sequences. The formation of a self-assembled parallel G-quadruplex was confirmed through various biophysical techniques such as circular dichroism, nuclear magnetic resonance, polyacrylamide electrophoresis and denaturation curves. Binding experiments to ASGPR show that the size and the relative position of the therapeutic cargo are critical for the binding of these nanostructures. The biological properties of the resulting parallel G-quadruplex were evaluated demonstrating the absence of the toxicity in cell lines. The internalization preferences of GalNAc-quadruplexes to hepatic cells were also demonstrated as well as the enhancement of the luciferase inhibition using the luciferase assay in HepG2 cell lines versus HeLa cells. All together, we demonstrate that tetramerization of G-rich oligonucleotide is a novel and simple route to obtain the beneficial effects of multivalent N-acetylgalactosamine functionalizatio

    Investigational RNAi Therapeutic Targeting C5 Is Efficacious in Pre-clinical Models of Myasthenia Gravis

    No full text
    Complement-mediated damage to the neuromuscular junction (NMJ) is a key mechanism of pathology in myasthenia gravis (MG), and therapeutics inhibiting complement have shown evidence of efficacy in the treatment of MG. In this study, we describe the development of a subcutaneously administered N-acetylgalactosamine (GalNAc)-conjugated small interfering RNA (siRNA) targeting the C5 component of complement that silences C5 expression in the liver (ALN-CC5). Treatment of wild-type rodents with ALN-CC5 resulted in robust and durable suppression of liver C5 expression. Dose-dependent serum C5 suppression was observed in non-human primates, with a lowering of serum C5 of up to 97.5% and the concomitant inhibition of serum complement activity. C5 silencing was efficacious in ameliorating disease symptoms in two standard rat models of MG, demonstrating the key role of circulating C5 in pathology at the NMJ. Improvement in disease activity scores and NMJ pathology was observed at intermediate levels of complement activity inhibition, suggesting that complete ablation of complement activity may not be required for efficacy in MG. The pre-clinical studies of ALN-CC5 and efficacy of C5 silencing in rat models of MG support further clinical development of ALN-CC5 as a potential therapeutic for the treatment of MG and other complement-mediated disorders

    siRNA Conjugates Carrying Sequentially Assembled Trivalent <i>N-</i>Acetylgalactosamine Linked Through Nucleosides Elicit Robust Gene Silencing <i>In Vivo</i> in Hepatocytes

    No full text
    Asialoglycoprotein receptor (ASGPR) mediated delivery of triantennary <i>N</i>-acetylgalactosamine (GalNAc) conjugated short interfering RNAs (siRNAs) to hepatocytes is a promising paradigm for RNAi therapeutics. Robust and durable gene silencing upon subcutaneous administration at therapeutically acceptable dose levels resulted in the advancement of GalNAc-conjugated oligonucleotide-based drugs into preclinical and clinical developments. To systematically evaluate the effect of display and positioning of the GalNAc moiety within the siRNA duplex on ASGPR binding and RNAi activity, nucleotides carrying monovalent GalNAc were designed. Evaluation of clustered and dispersed incorporation of GalNAc units to the sense (S) strand indicated that sugar proximity is critical for ASGPR recognition, and location of the clustered ligand impacts the intrinsic potency of the siRNA. An array of nucleosidic GalNAc monomers resembling a trivalent ligand at or near the 3′ end of the S strand retained <i>in vitro</i> and <i>in vivo</i> siRNA activity, similar to the parent conjugate design. This work demonstrates the utility of simple, nucleotide-based, cost-effective siRNA–GalNAc conjugation strategies

    siRNA Conjugates Carrying Sequentially Assembled Trivalent <i>N-</i>Acetylgalactosamine Linked Through Nucleosides Elicit Robust Gene Silencing <i>In Vivo</i> in Hepatocytes

    No full text
    Asialoglycoprotein receptor (ASGPR) mediated delivery of triantennary <i>N</i>-acetylgalactosamine (GalNAc) conjugated short interfering RNAs (siRNAs) to hepatocytes is a promising paradigm for RNAi therapeutics. Robust and durable gene silencing upon subcutaneous administration at therapeutically acceptable dose levels resulted in the advancement of GalNAc-conjugated oligonucleotide-based drugs into preclinical and clinical developments. To systematically evaluate the effect of display and positioning of the GalNAc moiety within the siRNA duplex on ASGPR binding and RNAi activity, nucleotides carrying monovalent GalNAc were designed. Evaluation of clustered and dispersed incorporation of GalNAc units to the sense (S) strand indicated that sugar proximity is critical for ASGPR recognition, and location of the clustered ligand impacts the intrinsic potency of the siRNA. An array of nucleosidic GalNAc monomers resembling a trivalent ligand at or near the 3′ end of the S strand retained <i>in vitro</i> and <i>in vivo</i> siRNA activity, similar to the parent conjugate design. This work demonstrates the utility of simple, nucleotide-based, cost-effective siRNA–GalNAc conjugation strategies
    corecore