11 research outputs found

    S6K1 controls pancreatic β cell size independently of intrauterine growth restriction

    Get PDF
    Type 2 diabetes mellitus (T2DM) is a worldwide heath problem that is characterized by insulin resistance and the eventual loss of β cell function. As recent studies have shown that loss of ribosomal protein (RP) S6 kinase 1 (S6K1) increases systemic insulin sensitivity, S6K1 inhibitors are being pursued as potential agents for improving insulin resistance. Here we found that S6K1 deficiency in mice also leads to decreased β cell growth, intrauterine growth restriction (IUGR), and impaired placental development. IUGR is a common complication of human pregnancy that limits the supply of oxygen and nutrients to the developing fetus, leading to diminished embryonic β cell growth and the onset of T2DM later in life. However, restoration of placental development and the rescue of IUGR by tetraploid embryo complementation did not restore β cell size or insulin levels in S6K1-/- embryos, suggesting that loss of S6K1 leads to an intrinsic β cell lesion. Consistent with this hypothesis, reexpression of S6K1 in β cells of S6K1-/- mice restored embryonic β cell size, insulin levels, glucose tolerance, and RPS6 phosphorylation, without rescuing IUGR. Together, these data suggest that a nutrient-mediated reduction in intrinsic β cell S6K1 signaling, rather than IUGR, during fetal development may underlie reduced β cell growth and eventual development of T2DM later in life

    Negative Feedback Regulation of MKK6 mRNA Stability by p38α Mitogen-Activated Protein Kinase

    No full text
    p38 mitogen-activated protein (MAP) kinases play an important role in the regulation of cellular responses to all kinds of stresses. The most abundant and broadly expressed p38 MAP kinase is p38α, which can also control the proliferation, differentiation, and survival of several cell types. Here we show that the absence of p38α correlates with the up-regulation of one of its upstream activators, the MAP kinase kinase MKK6, in p38α(−/−) knockout mice and in cultured cells derived from them. In contrast, the expression levels of the p38 activators MKK3 and MKK4 are not affected in p38α-deficient cells. The increase in MKK6 protein concentration correlates with increased amounts of MKK6 mRNA in the p38α(−/−) cells. Pharmacological inhibition of p38α also up-regulates MKK6 mRNA levels in HEK293 cells. Conversely, reintroduction of p38α into p38α(−/−) cells reduces the levels of MKK6 protein and mRNA to the normal levels found in wild-type cells. Moreover, we show that the MKK6 mRNA is more stable in p38α(−/−) cells and that the 3′untranslated region of this mRNA can differentially regulate the stability of the lacZ reporter gene in a p38α-dependent manner. Our data indicate that p38α can negatively regulate the stability of the MKK6 mRNA and thus control the steady-state concentration of one of its upstream activators

    Developmental and adult phenotyping directly from mutant embryonic stem cells

    No full text
    Tetraploid embryo complementation assay has shown that mouse ES cells alone are capable of supporting embryonic development and adult life of mice. Newly established F, hybrid ES cells allow the production of ES cell-derived animals at a high enough efficiency to directly make ES cell-based genetics feasible. Here we report the establishment and characterization of 12 new F, hybrid ES cell lines and the use of one of the best (G4) in a gain- and loss-of-function genetic study, where the in vivo phenotypes were assessed directly from ES cell-derived embryos. We found the generation of G4 ES cell-derived animals to be very efficient. Furthermore, even after two consecutive rounds of genetic modifications, the majority of trans-genic lines retained the original potential of the parental lines; with 10-40% of chimeras producing ES cell-derived animals/embryos. Using these genetically altered ES cells, this success rate, in most cases, permitted the derivation of a sufficient number of mutants for initial phenotypic analyses only a few weeks after the establishment of the cell lines. Although the experimental design has to take into account a moderate level of uncontrolled damage on ES cell lines, our proof-of-principle experiment provides useful data to assist future designs harnessing the power of this technology to accelerate our understanding of gene function

    Mice Deficient for the Ets Transcription Factor Elk-1 Show Normal Immune Responses and Mildly Impaired Neuronal Gene Activation

    No full text
    The transcription factor Elk-1 belongs to the ternary complex factor (TCF) subfamily of Ets proteins. TCFs interact with serum response factor to bind jointly to serum response elements in the promoters of immediate-early genes (IEGs). TCFs mediate the rapid transcriptional response of IEGs to various extracellular stimuli which activate mitogen-activated protein kinase signaling. To investigate physiological functions of Elk-1 in vivo, we generated Elk-1-deficient mice by homologous recombination in embryonic stem cells. These animals were found to be phenotypically indistinguishable from their wild-type littermates. Histological analysis of various tissues failed to reveal any differences between Elk-1 mutant and wild-type mice. Elk-1 deficiency caused no changes in the proteomic displays of brain or spleen extracts. Also, no immunological defects could be detected in mice lacking Elk-1, even upon infection with coxsackievirus B3. In mouse embryonic fibroblasts, Elk-1 was dispensable for c-fos and Egr-1 transcriptional activation upon stimulation with serum, lysophosphatidic acid, or tetradecanoyl phorbol acetate. However, in brains of Elk-1-deficient mice, cortical and hippocampal CA1 expression of c-fos, but not Egr-1 or c-Jun, was markedly reduced 4 h following kainate-induced seizures. This was not accompanied by altered patterns of neuronal apoptosis. Collectively, our data indicate that Elk-1 is essential neither for mouse development nor for adult life, suggesting compensatory activities by other TCFs

    Mouse limb deformity mutations disrupt a global control region within the large regulatory landscape required for Gremlin expression

    No full text
    The mouse limb deformity (ld) mutations cause limb malformations by disrupting epithelial–mesenchymal signaling between the polarizing region and the apical ectodermal ridge. Formin was proposed as the relevant gene because three of the five ld alleles disrupt its C-terminal domain. In contrast, our studies establish that the two other ld alleles directly disrupt the neighboring Gremlin gene, corroborating the requirement of this BMP antagonist for limb morphogenesis. Further doubts concerning an involvement of Formin in the ld limb phenotype are cast, as a targeted mutation removing the C-terminal Formin domain by frame shift does not affect embryogenesis. In contrast, the deletion of the corresponding genomic region reproduces the ld limb phenotype and is allelic to mutations in Gremlin. We resolve these conflicting results by identifying a cis-regulatory region within the deletion that is required for Gremlin activation in the limb bud mesenchyme. This distant cis-regulatory region within Formin is also altered by three of the ld mutations. Therefore, the ld limb bud patterning defects are not caused by disruption of Formin, but by alteration of a global control region (GCR) required for Gremlin transcription. Our studies reveal the large genomic landscape harboring this GCR, which is required for tissue-specific coexpression of two structurally and functionally unrelated genes
    corecore