4 research outputs found

    Reorganization of brain function during force production after stroke

    No full text
    Damage to motor areas of the brain, caused by stroke, can produce devastating motor deficits, including aberrant control of force. After stroke, reorganization of the brain’s motor system has been identified as one of the fundamental mechanisms involved in recovery of motor control after stroke. Yet, few studies have investigated how force production and modulation are encoded in the brain after stroke and how this relates to motor outcome. Thus, the purpose of this study was to (1) understand how past neuroimaging literature has contributed to establishing common patterns of brain reorganization during both relative and absolute force production after stroke, (2) examine how brain function is reorganized during force production and modulation in individuals with stroke, and (3) relate this task-related reorganization of brain function to the amount of paretic arm use after stroke. In the second chapter, we systematically reviewed all relevant literature examining brain activation during force production after stroke. The following chapters (chapters 3 and 4) applied functional magnetic resonance imaging (fMRI) to examine the neural correlates of force production and modulation after stroke. Chapter 2 supports differences in task-related brain activation dependent on features of stroke, such as severity and chronicity, as well as influence of rehabilitation. In addition, results suggest that activation of common motor areas of the brain during force production can be identified in relation to functional outcome after stroke. Results from the subsequent two chapters (3 and 4), demonstrate that brain function reorganizes in terms of absolute, and not relative force production after stroke. Specifically, stroke participants exhibit greater activation of motor areas than healthy controls when matched for absolute force production. Moreover, there is a relationship between paretic arm usage and brain activation, where stroke participants having less paretic arm use, as measured using wrist accelerometers, exhibit higher brain activation. Results of this thesis suggest that during absolute force production, brain activation may approach near maximal levels in stroke participants at lower forces than healthy controls. Furthermore, this effect may be amplified even further in subjects with less paretic arm usage, as increased activation in motor areas occurs in participants with less arm use after stroke. Ultimately, the results from this thesis will contribute to research relevant to brain reorganization in individuals with stroke and may lead to the development of new, beneficial therapeutic interventions that optimize brain reorganization and improve functional recovery after stroke.Medicine, Faculty ofGraduat

    Reorganization and Preservation of Motor Control of the Brain in Spinal Cord Injury: A Systematic Review

    Full text link
    Reorganization of brain function in patients with CNS damage has been identified as one of the fundamental mechanisms involved in the recovery of sensori-motor function. Spinal cord injury (SCI) brain mapping studies during motor tasks aim for assessing the reorganization and preservation of brain networks involved in motor control. Revealing the activation of cortical and sub-cortical brain areas in patients with SCI can indicate principal patterns of brain reorganization when the neurotrauma is distal to the brain. This review assessed brain activation after SCI in terms of intensity, volume, and somatotopic localization, as well as preservation of activation during attempted and/or imagined movements. Twenty-five studies meeting the inclusion criteria could be identified in MEDLINE (1980 to January 2008). Relevant characteristics of studies (level of lesion, time after injury, motor task) and mapping techniques varied widely. Changes in brain activation were found in both cortical and subcortical areas of SCI subjects. In addition, several studies described a shift in the region of brain activation. These patterns appeared to be dynamic and influenced by the level, completeness and time after injury, as well as extent of clinical recovery. In addition, several aspects of reorganization of brain function following SCI resembled those reported in stroke. This review demonstrates that brain networks involved in different demands of motor control remain responsive even in chronic paralysis. These findings imply that therapeutic strategies aiming for restoring spinal cord function even in chronic SCI can build on a preserved competent brain control
    corecore