31 research outputs found

    Changes in extremely hot days under stabilized 1.5 °C and 2.0 °c global warming scenarios as simulated by the HAPPI multi-model ensemble

    Get PDF
    The half a degree additional warming, prognosis and projected impacts (HAPPI) experimental protocol provides a multi-model database to compare the effects of stabilizing anthropogenic global warming of 1.5 °C over preindustrial levels to 2.0 °C over these levels. The HAPPI experiment is based upon large ensembles of global atmospheric models forced by sea surface temperature and sea ice concentrations plausible for these stabilization levels. This paper examines changes in extremes of high temperatures averaged over three consecutive days. Changes in this measure of extreme temperature are also compared to changes in hot season temperatures. We find that over land this measure of extreme high temperature increases from about 0.5 to 1.5 °C over present-day values in the 1.5 °C stabilization scenario, depending on location and model. We further find an additional 0.25 to 1.0 °C increase in extreme high temperatures over land in the 2.0 °C stabilization scenario. Results from the HAPPI models are consistent with similar results from the one available fully coupled climate model. However, a complicating factor in interpreting extreme temperature changes across the HAPPI models is their diversity of aerosol forcing changes

    Three-dimensional localization of nanoscale battery reactions using soft X-ray tomography.

    Get PDF
    Battery function is determined by the efficiency and reversibility of the electrochemical phase transformations at solid electrodes. The microscopic tools available to study the chemical states of matter with the required spatial resolution and chemical specificity are intrinsically limited when studying complex architectures by their reliance on two-dimensional projections of thick material. Here, we report the development of soft X-ray ptychographic tomography, which resolves chemical states in three dimensions at 11 nm spatial resolution. We study an ensemble of nano-plates of lithium iron phosphate extracted from a battery electrode at 50% state of charge. Using a set of nanoscale tomograms, we quantify the electrochemical state and resolve phase boundaries throughout the volume of individual nanoparticles. These observations reveal multiple reaction points, intra-particle heterogeneity, and size effects that highlight the importance of multi-dimensional analytical tools in providing novel insight to the design of the next generation of high-performance devices

    Vitamin D Levels in Asymptomatic Adults-A Population Survey in Karachi, Pakistan

    Get PDF
    Background: It is well established that low levels of 25(OH) Vitamin D (/dL) are a common finding world over, affecting over a billion of the global population. Our primary objective was to determine the prevalence of vitamin D deficiency and insufficiency in the asymptomatic adult population of Karachi, Pakistan and the demographic, nutritional and co-morbidity characteristics associated with serum vitamin D levels. Methods: A cross-sectional population survey was conducted at two spaced out densely populated areas of the city. Serum levels of 25OH vitamin D were measured and GFR as renal function was assessed by using 4 variable MDRD formula. Results: Our sample of 300 had a median age of 48(interquartile range 38-55) years. The median level of serum vitamin D was 18.8 (IQ range 12.65-24.62) ng/dL. A total of 253 (84.3%) respondents had low levels (/dL) of 25OH vitamin D. Serum PTH and vitamin D were negatively correlated (r = -0.176, p = 0.001). The median PTH in the vitamin D sufficiency group was 38.4 (IQ range28.0-48.8)pg/mL compared with 44.4 (IQ range 34.3-56.8) pg/mL in the deficiency group (p = 0.011).The median serum calcium level in the sample was 9.46(IQ range 9.18-9.68) ng/dL. Low serum levels of vitamin D were not associated with hypertension (p = 0.771) or with an elevated spot blood pressure (p = 0.164).In our sample 75(26%) respondents had an eGFR corresponding to stage 2 and stage 3 CKD. There was no significant correlation between levels of vitamin D and eGFR (r = -0.127, p-value = 0.277). Respondents using daily vitamin D supplements had higher 25 OH vitamin D levels (p-value = 0.021). Conclusion: We observed a high proportion of the asymptomatic adult population having low levels of vitamin D and subclinical deterioration of eGFR. The specific cause(s) for this observed high prevalence of low 25OH vitamin D levels are not clear and need to be investigated further upon

    Near-edge X-ray Refraction Fine Structure Microscopy

    Get PDF
    We demonstrate a method for obtaining increased spatial resolution and specificity in nanoscale chemical composition maps through the use of full refractive reference spectra in soft x-ray spectro-microscopy. Using soft x-rayptychography, we measure both the absorption and refraction of x-rays through pristine reference materials as a function of photon energy and use these reference spectra as the basis for decomposing spatially resolved spectra from a heterogeneous sample, thereby quantifying the composition at high resolution. While conventional instruments are limited to absorption contrast, our novel refraction based method takes advantage of the strongly energy dependent scattering cross-section and can see nearly five-fold improved spatial resolutionon resonance

    The Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Quantifying Uncertainties in Atmospheric River Climatology

    Get PDF
    Atmospheric rivers (ARs) are now widely known for their association with high‐impact weather events and long‐term water supply in many regions. Researchers within the scientific community have developed numerous methods to identify and track of ARs—a necessary step for analyses on gridded data sets, and objective attribution of impacts to ARs. These different methods have been developed to answer specific research questions and hence use different criteria (e.g., geometry, threshold values of key variables, and time dependence). Furthermore, these methods are often employed using different reanalysis data sets, time periods, and regions of interest. The goal of the Atmospheric River Tracking Method Intercomparison Project (ARTMIP) is to understand and quantify uncertainties in AR science that arise due to differences in these methods. This paper presents results for key AR‐related metrics based on 20+ different AR identification and tracking methods applied to Modern‐Era Retrospective Analysis for Research and Applications Version 2 reanalysis data from January 1980 through June 2017. We show that AR frequency, duration, and seasonality exhibit a wide range of results, while the meridional distribution of these metrics along selected coastal (but not interior) transects are quite similar across methods. Furthermore, methods are grouped into criteria‐based clusters, within which the range of results is reduced. AR case studies and an evaluation of individual method deviation from an all‐method mean highlight advantages/disadvantages of certain approaches. For example, methods with less (more) restrictive criteria identify more (less) ARs and AR‐related impacts. Finally, this paper concludes with a discussion and recommendations for those conducting AR‐related research to consider.Fil: Rutz, Jonathan J.. National Ocean And Atmospheric Administration; Estados UnidosFil: Shields, Christine A.. National Center for Atmospheric Research; Estados UnidosFil: Lora, Juan M.. University of Yale; Estados UnidosFil: Payne, Ashley E.. University of Michigan; Estados UnidosFil: Guan, Bin. California Institute of Technology; Estados UnidosFil: Ullrich, Paul. University of California at Davis; Estados UnidosFil: O'Brien, Travis. Lawrence Berkeley National Laboratory; Estados UnidosFil: Leung, Ruby. Pacific Northwest National Laboratory; Estados UnidosFil: Ralph, F. Martin. Center For Western Weather And Water Extremes; Estados UnidosFil: Wehner, Michael. Lawrence Berkeley National Laboratory; Estados UnidosFil: Brands, Swen. Meteogalicia; EspañaFil: Collow, Allison. Universities Space Research Association; Estados UnidosFil: Goldenson, Naomi. University of California at Los Angeles; Estados UnidosFil: Gorodetskaya, Irina. Universidade de Aveiro; PortugalFil: Griffith, Helen. University of Reading; Reino UnidoFil: Kashinath, Karthik. Lawrence Bekeley National Laboratory; Estados UnidosFil: Kawzenuk, Brian. Center For Western Weather And Water Extremes; Reino UnidoFil: Krishnan, Harinarayan. Lawrence Berkeley National Laboratory; Estados UnidosFil: Kurlin, Vitaliy. University of Liverpool; Reino UnidoFil: Lavers, David. European Centre For Medium-range Weather Forecasts; Estados UnidosFil: Magnusdottir, Gudrun. University of California at Irvine; Estados UnidosFil: Mahoney, Kelly. Universidad de Lisboa; PortugalFil: Mc Clenny, Elizabeth. University of California at Davis; Estados UnidosFil: Muszynski, Grzegorz. University of Liverpool; Reino Unido. Lawrence Bekeley National Laboratory; Estados UnidosFil: Nguyen, Phu Dinh. University of California at Irvine; Estados UnidosFil: Prabhat, Mr.. Lawrence Bekeley National Laboratory; Estados UnidosFil: Qian, Yun. Pacific Northwest National Laboratory; Estados UnidosFil: Ramos, Alexandre M.. Universidade Nova de Lisboa; PortugalFil: Sarangi, Chandan. Pacific Northwest National Laboratory; Estados UnidosFil: Viale, Maximiliano. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales; Argentin

    Early 21st century anthropogenic changes in extremely hot days as simulated by the C20C+ detection and attribution multi-model ensemble

    Get PDF
    We examine the effect of the 20th and recent 21st century anthropogenic climate change on high temperature extremes as simulated by four global atmospheric general circulation models submitted to the Climate of the 20th Century Plus Detection and Attribution project. This coordinated experiment is based upon two large ensembles simulations for each participating model. The “world that was” simulations are externally forced as realistically as possible. The “world that might have been” is identical except that the influence of human forcing is removed but natural forcing agents and variations in ocean and sea ice are retained. We apply a stationary generalized extreme value analysis to the annual maxima of the three day average of the daily maximum surface air temperature, finding that long period return values have been increased by human activities between 1 and 3 °C over most land areas. Corresponding changes in the probability of achieving long period non-industrial return values in the industrialized world are also presented. We find that most regions experience increases in the frequency and intensity of extremely hot three day periods, but anthropogenic sulfate aerosol forcing changes locally can decrease these measures of heat waves in some models
    corecore