76 research outputs found

    Specific human leukocyte antigen DQ influence on expression of antiislet autoantibodies and progression to type 1 diabetes

    Get PDF
    Human leukocyte antigen (HLA) DQ haplotypes have the strongest genetic association with type 1 diabetes (T1DM) risk. OBJECTIVE: The objective of the study was to analyze whether HLA DQ alleles influence the development of antiislet autoantibodies, the progression to T1DM among autoantibody-positive relatives, or both. DESIGN: The Diabetes Prevention Trial-1 screened more than 90,000 nondiabetic relatives of patients for cytoplasmic islet-cell autoantibody (ICA) expression between 1994 and 2002. SETTING: The study was conducted in the general community. PARTICIPANTS: The Diabetes Prevention Trial-1 found 2817 ICA-positive relatives who were tested for biochemical autoantibodies (GAD65, ICA512, and insulin) and HLA-DQ haplotypes, and 2796 of them were followed up for progression to diabetes for up to 8 yr (median, 3.6 yr). MAIN OUTCOME MEASURE: Progression to T1DM was measured. RESULTS: High-risk DQ haplotypes and genotypes were associated with a higher percentage of relatives expressing multiple biochemical autoantibodies and higher T1DM risk (e.g., respectively, 59 and 36% at 5 yr for carriers of the DQA1*0301-DQB1*0302/DQA1*0501-DQB1*0201 genotype). The number of autoantibodies expressed significantly increased T1DM risk and across different DQ genotypes, autoantibody positivity directly correlated with diabetes risk. However, multivariate analyses indicated that the influence of most genotypes on T1DM risk was not independent from autoantibody expression, with the possible exception of DQA1*0102-DQB1*0602. Specific genotypic combinations conferred 5-yr diabetes risks significantly lower (e.g. 7%-DQA1*0201-DQB1*0201/DQA1*0501-DQB1*0201 and 14%-DQA1*0301-DQB1*0301/DQA1*0501-DQB1*0201) than when those haplotypes were found in other combinations. CONCLUSION: HLA DQ alleles determine autoantibody expression, which is correlated with diabetes progression. Among autoantibody-positive relatives, most HLA DQ genotypes did not further influence T1DM risk

    Primary ciliary dyskinesia: Longitudinal study of lung disease by ultrastructure defect and genotype

    Get PDF
    Rationale: In primary ciliary dyskinesia, factors leading to disease heterogeneity are poorly understood. Objectives: To describe early lung disease progression in primary ciliary dyskinesia and identify associations between ultrastructural defects and genotypes with clinical phenotype. Methods: This was a prospective, longitudinal (5 yr), multicenter, observational study. Inclusion criteria were less than 19 years at enrollment and greater than or equal to two annual study visits. Linear mixed effects models including random slope and random intercept were used to evaluate longitudinal associations between the ciliary defect group (or genotype group) and clinical features (percent predicted FEV 1 and weight and height z-scores). Measurements and Main Results: A total of 137 participants completed 732 visits. The group with absent inner dynein arm, central apparatus defects, and microtubular disorganization (IDA/CA/MTD) (n = 41) were significantly younger at diagnosis and in mixed effects models had significantly lower percent predicted FEV 1 and weight and height z-scores than the isolated outer dynein arm defect (n = 55) group. Participants with CCDC39 or CCDC40 mutations (n = 34) had lower percent predicted FEV 1 and weight and height z-scores than those with DNAH5 mutations (n = 36). For the entire cohort, percent predicted FEV 1 decline was heterogeneous with a mean (SE) decline of 0.57 (0.25) percent predicted/yr. Rate of decline was different from zero only in the IDA/MTD/CA group (mean [SE], 21.11 [0.48] percent predicted/yr; P = 0.02). Conclusions: Participants with IDA/MTD/CA defects, which included individuals with CCDC39 or CCDC40 mutations, had worse lung function and growth indices compared with those with outer dynein arm defects and DNAH5 mutations, respectively. The only group with a significant lung function decline over time were participants with IDA/MTD/CA defects

    A combined risk score enhances prediction of type 1 diabetes among susceptible children

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Research via the DOI in this recordType 1 diabetes (T1D)-an autoimmune disease that destroys the pancreatic islets, resulting in insulin deficiency-often begins early in life when islet autoantibody appearance signals high risk1. However, clinical diabetes can follow in weeks or only after decades, and is very difficult to predict. Ketoacidosis at onset remains common2,3 and is most severe in the very young4,5, in whom it can be life threatening and difficult to treat6-9. Autoantibody surveillance programs effectively prevent most ketoacidosis10-12 but require frequent evaluations whose expense limits public health adoption13. Prevention therapies applied before onset, when greater islet mass remains, have rarely been feasible14 because individuals at greatest risk of impending T1D are difficult to identify. To remedy this, we sought accurate, cost-effective estimation of future T1D risk by developing a combined risk score incorporating both fixed and variable factors (genetic, clinical and immunological) in 7,798 high-risk children followed closely from birth for 9.3 years. Compared with autoantibodies alone, the combined model dramatically improves T1D prediction at ≥2 years of age over horizons up to 8 years of age (area under the receiver operating characteristic curve ≥ 0.9), doubles the estimated efficiency of population-based newborn screening to prevent ketoacidosis, and enables individualized risk estimates for better prevention trial selection.National Institutes of Health/National Center for Advancing Translational Sciences Clinical and Translational ScienceDiabetes Research CenterDiabetes UKWellcome TrustJDR

    Clinical features of childhood primary ciliary dyskinesia by genotype and ultrastructural phenotype

    Get PDF
    Rationale: The relationship between clinical phenotype of childhood primary ciliary dyskinesia (PCD) and ultrastructural defects and genotype is poorly defined. Objectives: To delineate clinical features of childhood PCD and their associations with ultrastructural defects and genotype. Methods: A total of 118 participants younger than 19 years old with PCD were evaluated prospectively at six centers in North America using standardized procedures for diagnostic testing, spirometry, chest computed tomography, respiratory cultures, and clinical phenotyping. Measurements and Main Results: Clinical features included neonatal respiratory distress (82%), chronic cough (99%), and chronic nasal congestion (97%). There were no differences in clinical features or respiratory pathogens in subjects with outer dynein arm (ODA) defects (ODA alone; n = 54) and ODA plus inner dynein arm (IDA) defects (ODA 1 IDA; n = 18) versus subjects with IDA and central apparatus defects with microtubular disorganization (IDA/ CA/MTD; n = 40). Median FEV 1 was worse in the IDA/CA/MTD group (72% predicted) versus the combined ODA groups (92% predicted; P = 0.003). Median body mass index was lower in the IDA/ CA/MTD group (46th percentile) versus the ODA groups (70th percentile; P = 0.003). For all 118 subjects, median number of lobes with bronchiectasis was three and alveolar consolidation was two. However, the 5- to 11-year-old IDA/CA/MTD group had more lobes of bronchiectasis (median, 5; P = 0.0008) and consolidation (median, 3; P = 0.0001) compared with the ODA groups (median, 3 and 2, respectively). Similar findings were observed when limited to participants with biallelic mutations. Conclusions: Lung disease was heterogeneous across all ultrastructural and genotype groups, but worse in those with IDA/ CA/MTD ultrastructural defects, most of whom had biallelic mutations in CCDC39 or CCDC40

    Plasma ascorbic acid and the risk of islet autoimmunity and type 1 diabetes: the TEDDY study

    Get PDF
    Aims/hypothesis: We studied the association of plasma ascorbic acid with the risk of developing islet autoimmunity and type 1 diabetes and examined whether SNPs in vitamin C transport genes modify these associations. Furthermore, we aimed to determine whether the SNPs themselves are associated with the risk of islet autoimmunity or type 1 diabetes.Methods: We used a risk set sampled nested case–control design within an ongoing international multicentre observational study: The Environmental Determinants of Diabetes in the Young (TEDDY). The TEDDY study followed children with increased genetic risk from birth to endpoints of islet autoantibodies (350 cases, 974 controls) and type 1 diabetes (102 cases, 282 controls) in six clinical centres. Control participants were matched for family history of type 1 diabetes, clinical centre and sex. Plasma ascorbic acid concentration was measured at ages 6 and 12 months and then annually up to age 6 years. SNPs in vitamin C transport genes were genotyped using the ImmunoChip custom microarray. Comparisons were adjusted for HLA genotypes and for background population stratification.Results: Childhood plasma ascorbic acid (mean ± SD 10.76 ± 3.54 mg/l in controls) was inversely associated with islet autoimmunity risk (adjusted OR 0.96 [95% CI 0.92, 0.99] per +1 mg/l), particularly islet autoimmunity, starting with insulin autoantibodies (OR 0.94 [95% CI 0.88, 0.99]), but not with type 1 diabetes risk (OR 0.93 [95% Cl 0.86, 1.02]). The SLC2A2 rs5400 SNP was associated with increased risk of type 1 diabetes (OR 1.77 [95% CI 1.12, 2.80]), independent of plasma ascorbic acid (OR 0.92 [95% CI 0.84, 1.00]).Conclusions/interpretation: Higher plasma ascorbic acid levels may protect against islet autoimmunity in children genetically at risk for type 1 diabetes. Further studies are warranted to confirm these findings.Data availability: The datasets generated and analysed during the current study will be made available in the NIDDK Central Repository at https://www.niddkrepository.org/studies/teddy.</p

    Creating a multi-center rare disease consortium - the Consortium of Eosinophilic Gastrointestinal Disease Researchers (CEGIR).

    Get PDF
     Eosinophilic gastrointestinal disorders (EGIDs) affect various segments of the gastrointestinal tract. Since these disorders are rare, collaboration is essential to enroll subjects in clinical studies and study the broader population. The Rare Diseases Clinical Research Network (RDCRN), a program of the National Center for Advancing Translational Sciences (NCATS), funded the Consortium of Eosinophilic Gastrointestinal Disease Researchers (CEGIR) in 2014 to advance the field of EGIDs. CEGIR facilitates collaboration among various centers, subspecialties, patients, professional organizations and patient-advocacy groups and includes 14 clinical sites. It has successfully initiated two large multi-center clinical studies looking to refine EGID diagnoses and management. Several pilot studies are underway that focus on various aspects of EGIDs including novel therapeutic interventions, diagnostic and monitoring methods, and the role of the microbiome in pathogenesis. CEGIR currently nurtures five physician-scholars through a career training development program and has published more than 40 manuscripts since its inception. This review focuses on CEGIR's operating model and progress and how it facilitates a framework for exchange of ideas and stimulates research and innovation. This consortium provides a model for progress on other potential clinical areas

    Détection du ganglion sentinelle dans le mélanome malin

    No full text
    L'avènement de nouveaux traitements du mélanome nécessite une meilleure connaissance de l'extension de la maladie. La dissection du ganglion sentinelle apporte désormais de prédeux renseignements concernant l'éventuel envahissement tumoral du premier relais ganglionnaire. La présence de micrométastases ganglionnaires semble en effet corréler étroitement avec le risque de progression de la maladie. Les auteurs discutent le concept du ganglion sentinelle, sa technique de détection et sa place actuelle dans la prise en charge du mélanome malin

    Early feeding and risk of type 1 diabetes: experiences from the Trial to Reduce Insulin-dependent diabetes mellitus in the Genetically at Risk (TRIGR)

    Get PDF
    Short-term breastfeeding and early exposure to complex dietary proteins, such as cow milk proteins and cereals, or to fruit, berries, and roots have been implicated as risk factors for β cell autoimmunity, clinical type 1 diabetes, or both. The Trial to Reduce Insulin-dependent diabetes mellitus in the Genetically at Risk (TRIGR) is an international, randomized, double-blind, controlled intervention trial designed to answer the question of whether weaning to an extensively hydrolyzed formula in infancy will decrease the risk of type 1 diabetes later in childhood. In our pilot study, weaning to a highly hydrolyzed formula decreased by ≈ 50% the cumulative incidence of one or more diabetes-associated autoantibodies by a mean age of 4.7 y. This finding was confirmed in a recent follow-up analysis to 10 y of age. Currently, the full-scale TRIGR takes place in 77 centers in 15 countries. The TRIGR initially recruited 5606 newborn infants with a family member affected by type 1 diabetes and enrolled 2159 eligible subjects who carried a risk-conferring HLA genotype. All recruited mothers were encouraged to breastfeed. The intervention lasted for 6-8 mo with a minimum study formula exposure time of 2 mo, and hydrolyzed casein and standard cow milk-based weaning formulas were compared. Eighty percent of the participants were exposed to the study formula. The overall retention rate over the first 5 y was 87%, and protocol compliance was 94%. The randomization code will be opened when the last recruited child turns 10 y of age (ie, in 2017). PMID: 21653795 [Pu

    Risk factors for early anthracycline clinical cardiotoxicity in children: the pediatric oncology group experience

    No full text
    Purpose: To evaluate risk factors for clinical cardiotoxicity from anthracycline chemotherapy in children with cancer and to estimate the relative risk associated with each factor singly and with different combinations of risk factors. Patients and Methods: The study population consisted of 6493 children with cancer who had received anthracycline chemotherapy on Pediatric Oncology Group protocols during the period from 1974 to 1990. Cardiotoxicity, defined as congestive heart failure not due to other causes, abnormal measurements of cardiac function that prompted the discontinuation of therapy, or sudden death from presumed cardiac causes, was determined by a review of protocol records. Results: Cardiotoxicity was confirmed in 106 patients (1.6%): 58 had congestive heart failure, 43 had changes in measures of cardiac function that prompted the discontinuation of therapy and five died suddenly from presumed cardiac causes. In a multivariate analysis, factors contributing to the relative risk (RR) of toxicity were a cumulative dose of anthracycline≥550 mg/m 2 of body-surface area (RR=5.2), a maximal dose of 50 mg/m 2 (RR=2.8), female sex (RR=1.9), black race (RR=1.7), the presence of trisomy 21 (RR=3.4) and exposure to amsacrine (RR=2.6). The relative risk of early clinical cardiotoxicity increased with increasing numbers of risk factors and was projected to exceed 405 when all six statistically significant risk factors were present. Conclusion: Early clinical cardiotoxicity in children treated with anthracycline is rare. A high maximal dose, or cumulative dose of anthracycline, female sex, black race, the presence of trisomy 21 and treatment with amsacrine increase the risk for anthracycline-associated cardiotoxicity. The cumulative effect of multiple risk factors can be estimated as the product of the relative risks associated with each
    corecore