83 research outputs found

    Rights-Based Approaches to Development: International Monetary Fund

    Get PDF
    Just as the United Nations (U.N.) was created in direct response to the human atrocities and international conflict of World War II, the International Monetary Fund (IMF) was created to help repair the decimation that was experienced by the developed nations that became involved in the war. While both organizations have seemingly similar objectives (i. e. , post-war reconstruction and creation of an environment for lasting peace), the Articles of Agreement of the IMF, however, contains no explicit mention of human rights

    Program evaluation: Bureau of Reclamation, Lower Colorado Region business lines and focus areas “Water Drop” project

    Full text link
    This paper examines how familiar Bureau of Reclamation employees in the Lower Colorado Region are with the region’s goals and priorities and how well they understand their individual role in relationship to those goals and priorities. It also analyzes the effectiveness of the communication strategies in place to communicate the goals and priorities of the organization

    Why You Can’t Copy that Old PBS Show You have on VHS Tape…and Other Tales of “Unfair” Use

    Get PDF
    For years educators have operated under the maxim that if a copyrighted work is used for educational purposes, then it is not necessary to reimburse the holder of the copyright as one would do for “commercial” purposes. Under current interpretations of the law, however, we are just beginning to discover that this is not necessarily the case. In this seminar we’ll look at some of the fair use challenges that educators face today, the fair use resources that are available to us, and some valuable basic guidelines as to what copyright law does and does not permit for educational use. We will attempt to define and explain terms such as Digital Rights Management, the Teach Act, and the Digital Millennium Copyright Act and how they will affect our own classroom practices as we utilize more and more content from myriad resources both print and digital

    Seasonal drivers of understorey temperature buffering in temperate deciduous forests across Europe.

    Get PDF
    Aim:Forest understorey microclimates are often buffered against extreme heat or cold, with important implications for the organisms living in these environments. We quantified seasonal effects of understorey microclimate predictors describing canopy structure, canopy composition and topography (i.e., local factors) and the forest patch size and distance to the coast (i.e., landscape factors). Location:Temperate forests in Europe. Time period:2017-2018. Major taxa studied:Woody plants. Methods:We combined data from a microclimate sensor network with weather-station records to calculate the difference, or offset, between temperatures measured inside and outside forests. We used regression analysis to study the effects of local and landscape factors on the seasonal offset of minimum, mean and maximum temperatures. Results:The maximum temperature during the summer was on average cooler by 2.1 °C inside than outside forests, and the minimum temperatures during the winter and spring were 0.4 and 0.9 °C warmer. The local canopy cover was a strong nonlinear driver of the maximum temperature offset during summer, and we found increased cooling beneath tree species that cast the deepest shade. Seasonal offsets of minimum temperature were mainly regulated by landscape and topographic features, such as the distance to the coast and topographic position. Main conclusions:Forest organisms experience less severe temperature extremes than suggested by currently available macroclimate data; therefore, climate-species relationships and the responses of species to anthropogenic global warming cannot be modelled accurately in forests using macroclimate data alone. Changes in canopy cover and composition will strongly modulate the warming of maximum temperatures in forest understories, with important implications for understanding the responses of forest biodiversity and functioning to the combined threats of land-use change and climate change. Our predictive models are generally applicable across lowland temperate deciduous forests, providing ecologically important microclimate data for forest understories

    Combining biodiversity resurveys across regions to advance global change research

    Get PDF
    More and more ecologists have started to resurvey communities sampled in earlier decades to determine long-term shifts in community composition and infer the likely drivers of the ecological changes observed. However, to assess the relative importance of and interactions among multiple drivers, joint analyses of resurvey data from many regions spanning large environmental gradients are needed. In this article, we illustrate how combining resurvey data from multiple regions can increase the likelihood of driver orthogonality within the design and show that repeatedly surveying across multiple regions provides higher representativeness and comprehensiveness, allowing us to answer more completely a broader range of questions. We provide general guidelines to aid the implementation of multiregion resurvey databases. In so doing, we aim to encourage resurvey database development across other community types and biomes to advance global environmental change research

    EGFR-specific T cell frequencies correlate with EGFR expression in head and neck squamous cell carcinoma

    Get PDF
    Background\ud In head and neck squamous cell carcinoma (HNSCC), expression levels of the epidermal growth factor receptor (EGFR) correlate with poor prognosis and decreased survival rates. As the mechanisms responsible for cellular immune response to EGFR in vivo remain unclear, the frequency and function of EGFR-specific cytotoxic T cells (CTL) was determined in HNSCC patients.\ud \ud Methods\ud The frequency of CTL specific for the HLA-A2.1-restricted EGFR-derived YLN peptide (YLNTVQPTCV) and KLF peptide (KLFGTSGQKT) was determined in 16 HLA-A2.1+ HNSCC patients and 16 healthy HLA-A2.1+ individuals (NC) by multicolor flow cytometry. Patients' results were correlated to EGFR expression obtained by immunohistochemistry in corresponding tumor sections. Proliferation and anti-tumor activity of peptide-specific CTL was demonstrated by in vitro stimulation with dendritic cells pulsed with the peptides.\ud \ud Results\ud Frequency of EGFR-specific CTL correlated significantly with EGFR expression in tumor sections (p = 0.02, r2 = 0.6). Patients with elevated EGFR scores (> 7) had a significantly higher frequency of EGFR-specific CTL than NC and patients with low EGFR scores (< 7). EGFR-specific CTL from cancer patients were expanded ex vivo and produced IFN-Îł upon recognition of EGFR+ target cells.\ud \ud Conclusion\ud EGFR expressed on HNSCC cells induces a specific immune response in vivo. Strategies for expansion of EGFR-specific CTL may be important for future immunotherapy of HNSCC patients

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure
    • …
    corecore