7 research outputs found
Education from inside the bunker: Examining the effect of Defcon, a nuclear warfare simulation game, on nuclear attitudes and critical reflection
This mixed-methods study investigates the hypothesis that playing Defcon, a nuclear warfare simulation game, can affect attitudes toward nuclear weapons and stimulate critical reflection on this issue. Participants were 141 college students who were randomly assigned to game playing (experimental) and article reading (control) conditions. A multivariate repeated measures factorial analysis revealed statistically significant differences between groups for three pairs of pre-/post-test items. In addition, total pre- and post-test scores showed a significant interaction with group assignment, reported frequency of game play, and gender, with women and less frequent gamers exhibiting greater attitude changes. In the second, qualitative phase of the study, 20 additional participants were interviewed to better understand how playing Defcon may stimulate both attitude change and critical reflection about nuclear weapons
Regional-scale benthic monitoring for ecosystem-based fisheries management (EBFM) using an autonomous underwater vehicle (AUV)
Monitoring marine habitats and biodiversity is critical for understanding ecological processes, conserving natural resources, and achieving ecosystem-based fisheries management (EBFM). Here, we describe the application of autonomous underwater vehicle (AUV) technology to conduct ongoing monitoring of benthic habitats at two key locations in Western Australia. Benthic assemblages on rocky reefs were sampled with an AUV, which captured >200 000 geo-referenced images. Surveys were designed to obtain 100% coverage of 25 × 25 m patches of benthic habitat. In 2010, multiple patches were surveyed at 15–40-m depths at three reference sites at the Houtman Abrolhos Islands and at six reference sites at Rottnest Island. The following year, repeat surveys of the same geo-referenced patches were conducted. Benthic assemblages at the Houtman Abrolhos Islands were varied in that one reference site was dominated by hard corals, whereas the other two were macroalgae dominated. Conversely, assemblages at Rottnest Island were dominated by the kelp Ecklonia radiata. The AUV resurveyed each patch with high precision and demonstrated adequate power to detect change. Repeated observations at the reference sites will track natural variability in benthic habitat structure, which in turn will facilitate the detection of ecological change and ultimately feed back into EBFM processes
The ascent of acetylation in the epigenetics of rheumatoid arthritis
Genome-wide association studies have shown that genetic polymorphisms make a substantial but incomplete contribution to the risk of developing rheumatoid arthritis (RA). Efforts to understand the nongenetic contributions to RA disease susceptibility have recently focused on the study of epigenetic mechanisms, namely modifications of DNA and histones, which are subject to environmental influences and regulate gene expression. A surprising theme emerging from studies of the enzymes responsible for these epigenetic modifications, particularly histone deacetylases, is that they regulate inflammatory activation of cell populations relevant to RA through independent, direct, and dynamic interactions with nonhistone proteins. Herein, we highlight studies, the findings of which collectively suggest that revisiting the original definition of epigenetics, conceived some 70 years ago, might advance our interpretation of DNA and histone modifications with regard to gene expression and clinical outcome in RA. Such an approach could also facilitate the development of strategies to target these epigenetic modifications in the clini
Stratified analyses refine association between TLR7 rare variants and severe COVID-19
Summary: Despite extensive global research into genetic predisposition for severe COVID-19, knowledge on the role of rare host genetic variants and their relation to other risk factors remains limited. Here, 52 genes with prior etiological evidence were sequenced in 1,772 severe COVID-19 cases and 5,347 population-based controls from Spain/Italy. Rare deleterious TLR7 variants were present in 2.4% of young (<60 years) cases with no reported clinical risk factors (n = 378), compared to 0.24% of controls (odds ratio [OR] = 12.3, p = 1.27 × 10−10). Incorporation of the results of either functional assays or protein modeling led to a pronounced increase in effect size (ORmax = 46.5, p = 1.74 × 10−15). Association signals for the X-chromosomal gene TLR7 were also detected in the female-only subgroup, suggesting the existence of additional mechanisms beyond X-linked recessive inheritance in males. Additionally, supporting evidence was generated for a contribution to severe COVID-19 of the previously implicated genes IFNAR2, IFIH1, and TBK1. Our results refine the genetic contribution of rare TLR7 variants to severe COVID-19 and strengthen evidence for the etiological relevance of genes in the interferon signaling pathway