64 research outputs found

    An implementation plan for priorities in solar-system space physics

    Get PDF
    The scientific objectives and implementation plans and priorities of the Space Science Board in areas of solar physics, heliospheric physics, magnetospheric physics, upper atmosphere physics, solar-terrestrial coupling, and comparative planetary studies are discussed and recommended programs are summarized. Accomplishments of Skylab, Solar Maximum Mission, Nimbus-7, and 11 other programs are highlighted. Detailed mission plans in areas of solar and heliospheric physics, plasma physics, and upper atmospheric physics are also described

    Energetic Ion Moments and Polytropic Index in Saturn’s Magnetosphere using Cassini/MIMI Measurements: A Simple Model Based on κ‐Distribution Functions

    Full text link
    Moments of the charged particle distribution function provide a compact way of studying the transport, acceleration, and interactions of plasma and energetic particles in the magnetosphere. We employ κ‐distributions to describe the energy spectra of H+ and O+, based on >20 keV measurements by the three detectors of Cassini’s Magnetospheric Imaging Instrument, covering the time period from DOY 183/2004 to 016/2016, 5 < L < 20. From the analytical spectra we calculate the equatorial distributions of energetic ion moments inside Saturn’s magnetosphere and then focus on the distributions of the characteristic energy (Ec=IE/In), temperature, and κ‐index of these ions. A semiempirical model is utilized to simulate the equatorial ion moments in both local time and L‐shell, allowing the derivation of the polytropic index (Γ) for both H+ and O+. Primary results are as follows: (a) The ∼9 < L < 20 region corresponds to a local equatorial acceleration region, where subadiabatic transport of H+ (Γ∼1.25) and quasi‐isothermal behavior of O+ (Γ∼0.95) dominate the ion energetics; (b) energetic ions are heavily depleted in the inner magnetospheric regions, and their behavior appears to be quasi‐isothermal (Γ<1); (c) the (quasi‐) periodic energetic ion injections in the outer parts of Saturn’s magnetosphere (especially beyond 17–18 RS) produce durable signatures in the energetic ion moments; (d) the plasma sheet does not seem to have a ground thermodynamic state, but the extended neutral gas distribution at Saturn provides an effective cooling mechanism that does not allow the plasma sheet to behave adiabatically.Key PointsDerivation of energetic ion moments, κ‐index, characteristic energy, temperature, and polytropic index in Saturn’s magnetospherePresentation of a semiempirical analytical model for the 20 keV energetic ion Pressure, density, and temperatureThe neutral gas at Saturn provides an effective cooling mechanism and does not allow the plasma sheet to behave adiabaticallyPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146558/1/jgra54546.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146558/2/jgra54546_am.pd

    Spatial Distribution and Spectral Characteristics of Energetic Electrons in Mercury's Magnetosphere

    Get PDF
    The Energetic Particle Spectrometer (EPS) on the MESSENGER spacecraft, in orbit about Mercury since March 2011, has detected bursts of low- and moderate-energy (tens to hundreds of keV) electrons during portions of most orbits. There have been periods when such bursts were observed regularly on every orbit over a span of several weeks, and other periods when electrons were not observed for several days at a time. We have systematically characterized these energetic events on the basis of particle intensity over the 12-month period since MESSENGER began orbital operations. Now that MESSENGER has sampled most Mercury longitudes and local times, it is evident that the largest burst events were either at high northern latitudes or near local midnight. Lower-energy events were also seen near the equator but were mostly absent in both the dawn and dusk local time sectors. The high-latitude and nightside events are similar in particle intensity, spectra, and pitch angle and are interpreted to be the result of acceleration by the same mechanism. Another group of events occurred upstream of Mercury's bow shock. For two examples of this group of upstream events with good pitch angle coverage, the particles were field-aligned and traveling away from the bow shock. This group of events is interpreted to be similar to upstream events found at Earth during which particles are accelerated at the bow shock and subsequently travel upstream into the solar wind

    MESSENGER: Exploring Mercury's Magnetosphere

    Get PDF
    The MESSENGER mission to Mercury offers our first opportunity to explore this planet s miniature magnetosphere since the brief flybys of Mariner 10. Mercury s magnetosphere is unique in many respects. The magnetosphere of Mercury is among the smallest in the solar system; its magnetic field typically stands off the solar wind only - 1000 to 2000 km above the surface. For this reason there are no closed drift paths for energetic particles and, hence, no radiation belts. The characteristic time scales for wave propagation and convective transport are short and kinetic and fluid modes may be coupled. Magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere allowing solar wind ions to impact directly the regolith. Inductive currents in Mercury s interior may act to modify the solar wind interaction by resisting changes due to solar wind pressure variations. Indeed, observations of these induction effects may be an important source of information on the state of Mercury s interior. In addition, Mercury s magnetosphere is the only one with its defining magnetic flux tubes rooted in a planetary regolith as opposed to an atmosphere with a conductive ionospheric layer. This lack of an ionosphere is probably the underlying reason for the brevity of the very intense, but short-lived, - 1-2 min, substorm-like energetic particle events observed by Mariner 10 during its first traversal of Mercury s magnetic tail. Because of Mercury s proximity to the sun, 0.3 - 0.5 AU, this magnetosphere experiences the most extreme driving forces in the solar system. All of these factors are expected to produce complicated interactions involving the exchange and re-cycling of neutrals and ions between the solar wind, magnetosphere, and regolith. The electrodynamics of Mercury s magnetosphere are expected to be equally complex, with strong forcing by the solar wind, magnetic reconnection at the magnetopause and in the tail, and the pick-up of planetary ions all driving field-aligned electric currents. However, these field-aligned currents do not close in an ionosphere, but in some other manner. In addition to the insights- into magnetospheric physics offered by study of the solar wind - Mercury system, quantitative specification of the "external" magnetic field generated by magnetospheric currents is necessary for accurate determination of the strength and multi-polar decomposition of Mercury s intrinsic magnetic field. MESSENGER S highly capable instrumentation and broad orbital coverage will greatly advance our understanding of both the origin of Mercury s magnetic field and the acceleration of charged particles in small magnetospheres. In. this article, we review what is known about Mercury s magnetosphere and describe the MESSENGER science team s strategy for obtaining answers to the outstanding science questions surrounding the interaction of the solar wind with Mercury and its small, but dynamic, magnetosphere

    I enA imaging: seeing the invisible

    Get PDF
    n what follows, we describe the technique and history of energetic neutral atom (enA) imaging of space plasma and present recent results from international collaborations involving enA imaging experiments as well as results from the imAge mission at earth and the cassini mission at Jupiter and saturn. both imAge and cassini carry ApL-built enA cameras. The henA instrument onboard the imAge mission provides global images of the ring current around the earth and reveals the importance of the electrical coupling between the ring current and the ionosphere. The incA instrument onboard cassini returns enA images from the enormous magnetosphere around saturn, giving unprecedented insight into the dynamics of the hot plasma and its interaction with neutral gas. The review ends with a brief description of enA imaging of the heliospheric boundary and future projects using enA instrumentation

    Grant Proposal for the Continuation of the Voyager Interstellar Mission: LECP Investigation

    Get PDF
    This proposal documents the plans of the Low Energy Charged Particle (LECP) investigation team for participation in NASA's Voyager Interstellar Mission (VIM) as the Voyager 1 and 2 spacecraft explore the outer reaches of the heliosphere and search for the termination shock and the heliopause. The proposal covers the four year period from 1 January 1997 to 31 December 2000. The LECP instruments on Voyager 1 and 2 measure in situ intensities of charged particles with energies from about 30 keV to 100 MeV for ions, and about 20 keV to greater than 10 MeV for electrons. The instruments provide detailed spectral, angular, and compositional information about the particles. Composition is available for greater than 200 keV/nuc using multi-parameter measurements. Angular information is obtained by a mechanically scanned platform that rotates at various commanded rates. Measurements of low energy ion and electron intensities versus time and spatial location within the heliosphere contain an abundance of information regarding various transport and acceleration processes on both local (approx. 1 hr, approx. 0.01 AU) and global (approx. 11 yrs, approx. 100 AU) scales. The LECP instruments provide unique observations of such dynamical processes, and we anticipate that it will return critical information regarding the boundaries of the heliosphere. Several recent and exciting discoveries based on LECP measurements emphasize the important role that low energy charged particle distributions play in physical processes in the interplanetary medium. Yet, at the same time, these discoveries also underscore the fact that our understanding of processes in the outer heliosphere is, in most cases, incomplete, and in others, only rudimentary at best. Among the discoveries referred to above are the following: (1) Shocks: Examination of greater than 30 keV ion intensities have revealed: (a) a total absence of acceleration beyond only -100-200 keV at a strong transient shock in May 1991 at 35 AU, despite an enhanced level of seed particles; (b) a large transient shock in September 1991 of global scale, with intensities of shock-accelerated ions greater than or equal to 30 keV to approx. 30 MeV showing complex, highly energy-dependent spatial evolution, and small-scale (approx. few gyroradii), often anisotropic, micro-structures; (c) recurrent intensity increases in greater than or equal to 30 keV to -few MeV ions, with structures that, in some cases, show no correlation with the associated corotating shock. (2) Superthermal ion pressure: A global merged interaction region with a leading shock, downstream of which the superthermal ion (greater than or equal to 30 keV to approx. 4 MeV) pressure is comparable to that of the thermal plasma, and the total particle pressure yields a plasma beta of order unity. (3) Pickup ions: Measurements of the C/O ratio within transient structures at 35-45 AU showing the first clear evidence that transient shocks can pre-accelerate interstellar pickup ions from approx. 1 keV/nuc to at least 1 MeV/nuc. (4) Seed particles: Injection of ions for acceleration to high energies at the termination shock is unlikely to be a problem, since interplanetary transient and recurrent shocks are continually accelerating ions, of solar wind or interstellar origin, to highly superthermal energies. (5) Precursor electrons: Ambient solar electrons (greater than or equal to few tens of keV) that exist in the outer heliosphere ca form a broad precursor, several days wide, that is upstream of the termination shock and potentially observable a few months prior to the shock crossing. (6) Solar wind velocity at Voyager 1: We can use LECP ion data to obtain the solar wind velocity at Voyager 1, enabling us to provide critical measurement of the plasma flow as we approach and encounter the termination shock and other regions (necessary due to the partial failure of the Voyager 1 PLS experiment). The work of the LECP investigator team during the VIM will include: (1) Continuing operations with regard to the receipt, processing, verification, cataloging, display, and distribution of the data from the LECP instruments on Voyager 1 and 2, (2) Monitoring the health and performance of the LECP instruments, and evaluating and characterizing the response of the LECP instruments to various energetic particle and plasma environments, (3) Participating in, and supporting Voyager Project planning exercises and other coordinated activities relevant to exploration of the outer heliosphere, (4) Developing analysis techniques and operational procedures suitable for searching for and characterizing the boundaries and unique regions of the outher heliosphere, (5) Continuing the preparation of data sets appropriate for submission to the National Space Sciences Data Center (NSSDC) and, where appropriate, the Planetary Data System (PDS), (6) Maintaining direct Web access to online LECP data through the JHU/APL Voyager LECP home page, (7) Performing scientific evaluations of the Voyager 1 and 2 LECP data sets in conjunction with other data sets and other investigators, with particular focus on the outer regions of the heliosphere, and (8) Publishing the results of these evaluations in the scientific literature and presenting the results in scientific conferences

    Distribution and compositional variations of plasma ions in Mercury's space environment: The first three Mercury years of MESSENGER observations

    Full text link
    We have analyzed measurements of planetary ions near Mercury made by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) Fast Imaging Plasma Spectrometer (FIPS) over the first three Mercury years of orbital observations (25 March 2011 through 31 December 2011). We determined the composition and spatial distributions of the most abundant species in the regions sampled by the MESSENGER spacecraft during that period. In particular, we here focus on altitude dependence and relative abundances of species in a variety of spatial domains. We used observed density as a proxy for ambient plasma density, because of limitations to the FIPS field of view. We find that the average observed density is 3.9 × 10 –2  cm –3 for He 2+ , 3.4 × 10 –4  cm –3 for He + , 8.0 × 10 –4  cm –3 for O + ‐group ions, and 5.1 × 10 –3  cm –3 for Na + ‐group ions. Na + ‐group ions are particularly enhanced over other planetary ions (He + and O + group) in the northern magnetospheric cusp (by a factor of ~2.0) and in the premidnight sector on the nightside (by a factor of ~1.6). Within 30° of the equator, the average densities of all planetary ions are depressed at the subsolar point relative to the dawn and dusk terminators. The effect is largest for Na + ‐group ions, which are 49% lower in density at the subsolar point than at the terminators. This depression could be an effect of the FIPS energy threshold. The three planetary ion species considered show distinct dependences on altitude and local time. The Na + group has the smallest e ‐folding height at all dayside local times, whereas He + has the largest. At the subsolar point, the e ‐folding height for Na + ‐group ions is 590 km, and that for the O + group and He + is 1100 km. On the nightside and within 750 km of the geographic equator, Na + ‐group ions are enhanced in the premidnight sector. This enhancement is consistent with nonadiabatic motion and may be observational evidence that nonadiabatic effects are important in Mercury's magnetosphere. Key Points Na+-group ions are enhanced in northern cusp and pre‐midnight sector Planetary ion species show distinct dependences on altitude and local time May be first observation of non‐adiabatic effects in Mercury's magnetospherePeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98388/1/jgra50016.pd

    On the Energy Dependence of Galactic Cosmic Ray Anisotropies in the Very Local Interstellar Medium

    Full text link
    We report on the energy dependence of galactic cosmic rays (GCRs) in the very local interstellar medium (VLISM) as measured by the Low Energy Charged Particle (LECP) instrument on the Voyager 1 (V1) spacecraft. The LECP instrument includes a dual-ended solid state detector particle telescope mechanically scanning through 360 deg across eight equally-spaced angular sectors. As reported previously, LECP measurements showed a dramatic increase in GCR intensities for all sectors of the >=211 MeV count rate (CH31) at the V1 heliopause (HP) crossing in 2012, however, since then the count rate data have demonstrated systematic episodes of intensity decrease for particles around 90{\deg} pitch angle. To shed light on the energy dependence of these GCR anisotropies over a wide range of energies, we use V1 LECP count rate and pulse height analyzer (PHA) data from >=211 MeV channel together with lower energy LECP channels. Our analysis shows that while GCR anisotropies are present over a wide range of energies, there is a decreasing trend in the amplitude of second-order anisotropy with increasing energy during anisotropy episodes. A stronger pitch-angle scattering at the higher velocities is argued as a potential cause for this energy dependence. A possible cause for this velocity dependence arising from weak rigidity dependence of the scattering mean free path and resulting velocity-dominated scattering rate is discussed. This interpretation is consistent with a recently reported lack of corresponding GCR electron anisotropies

    MESSENGER Observations of Dipolarization Events in Mercury's Magnetotail

    Get PDF
    Several series of large dipolarization events are documented from magnetic field observations in Mercury's magnetotail made by the MESSENGER spacecraft. The dipolarizations are identified by a rapid (∼1 s) increase in the northward component of the magnetic field, followed by a slower return (∼10 s) to pre-onset values. The changes in field strength during an event frequently reach 40 nT or higher, equivalent to an increase in the total magnetic field magnitude by a factor of ∼4 or more. The presence of spatially constrained dipolarizations at Mercury provides a key to understanding the magnetic substorm process in a new parameter regime: the dipolarization timescale, which is shorter than at Earth, is suspected to lead to efficient non-adiabatic heating of the plasma sheet proton population, and the high recurrence rate of the structures is similar to that frequently observed for flux ropes and traveling compression regions in Mercury's magnetotail. The relatively short lifetime of the events is attributed to the lack of steady field-aligned current systems at Mercury
    corecore