14 research outputs found

    A WCSPH Particle Shifting Strategy for Simulating Violent Free Surface Flows

    Get PDF
    ABSTRACT: first_pagesettingsOrder Article Reprints Open AccessArticle A WCSPH Particle Shifting Strategy for Simulating Violent Free Surface Flows by Abdelkader Krimi *ORCID,Mojtaba JandaghianORCID andAhmad Shakibaeinia Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC H3T 1J4, Canada * Author to whom correspondence should be addressed. Water 2020, 12(11), 3189; https://doi.org/10.3390/w12113189 Received: 5 October 2020 / Revised: 9 November 2020 / Accepted: 10 November 2020 / Published: 14 November 2020 (This article belongs to the Special Issue Meshless Methods for Water Dynamics and Complex Flows) Download Browse Figures Versions Notes Abstract In this work, we develop an enhanced particle shifting strategy in the framework of weakly compressibl

    Improved δ-SPH Scheme With Automatic and Adaptive Numerical Dissipation

    Get PDF
    [Abstract] In this work we present a δ-Smoothed Particle Hydrodynamics (SPH) scheme for weakly compressible flows with automatic adaptive numerical dissipation. The resulting scheme is a meshless self-adaptive method, in which the introduced artificial dissipation is designed to increase the dissipation in zones where the flow is under-resolved by the numerical scheme, and to decrease it where dissipation is not required. The accuracy and robustness of the proposed methodology is tested by solving several numerical examples. Using the proposed scheme, we are able to recover the theoretical decay of kinetic energy, even where the flow is under-resolved in very coarse particle discretizations. Moreover, compared with the original δ-SPH scheme, the proposed method reduces the number of problem-dependent parameters.This research was funded by the Ministerio de Ciencia, Innovación y Universidades of the Spanish Government, grant number #RTI2018-093366-B-I00, by the Consellería de Educación e Ordenación Universitaria of the Xunta de Galicia (grant number #ED431C 2018/41). Xesús Nogueira has also been funded by the Xunta de Galicia through the program Axudas para a mellora, creación, recoñecemento e estruturación de agrupacións estratéxicas do Sistema Universitario de Galicia (grant number # ED431E 2018/11)Xunta de Galicia; ED431C 2018/41Xunta de Galicia; ED431E 2018/1

    A very accurate Arbitrary Lagrangian–Eulerian meshless method for Computational Aeroacoustics

    Get PDF
    In this work, we propose a new meshless approach based on a Galerkin discretization of a set of conservation equations on an Arbitrary Lagrangian–Eulerian framework. In particular, we solve the Linearized Euler Equations, using Moving Least Squares as weight functions in the Galerkin discretization. Riemann solvers are introduced in the formulation for the discretization of the convective fluxes. Differently from a purely Lagrangian approach, as it is usual in SPH, the present method is able to work in both Eulerian and Lagrangian configurations, which allows using all the advantages of the Lagrangian approaches in the context of Computational Aeroacoustics

    Multiphase smoothed particle hydrodynamics approach for modeling soil–water interactions

    Get PDF
    In this work, a weakly compressible smoothed particle hydrodynamics (WCSPH) multiphase model is developed. The model is able to deal with soil-water interactions coupled in a strong and natural form. A Regularized Bingham Plastic constitutive law including a pressure-dependent Mohr-Coulomb yield criterion (RBPMC-αμ) is proposed to model fluids, soils and their interaction. Since the proposed rheology model is pressure-sensitive, we propose a multiphase diffusive term to reduce the spurious pressure resulting from the weakly compressible flow hypothesis. Several numerical benchmarks are investigated to assess the robustness and accuracy of the proposed multiphase SPH model

    Smoothed Particle Hydrodynamics: A consistent model for interfacial multiphase fluid flow simulations

    Get PDF
    In this work, a consistent Smoothed Particle Hydrodynamics (SPH) model to deal with interfacial multiphase fluid flows simulation is proposed. A modification to the Continuum Stress Surface formulation (CSS) [1] to enhance the stability near the fluid interface is developed in the framework of the SPH method. A non-conservative first-order consistency operator is used to compute the divergence of stress surface tensor. This formulation benefits of all the advantages of the one proposed by Adami et al. [2] and, in addition, it can be applied to more than two phases fluid flow simulations. Moreover, the generalized wall boundary conditions [3] are modified in order to be well adapted to multiphase fluid flows with different density and viscosity. In order to allow the application of this technique to wall-bounded multiphase flows, a modification of generalized wall boundary conditions is presented here for using the SPH method. In this work we also present a particle redistribution strategy as an extension of the damping technique presented in [3] to smooth the initial transient phase of gravitational multiphase fluid flow simulations. Several computational tests are investigated to show the accuracy, convergence and applicability of the proposed SPH interfacial multiphase model

    Modeling of multiphase fluid flows with Smoothed Particle Hydrodynamics approach

    No full text
    La méthode Smoothed Particle Hydrodynamics (SPH) est une méthode lagrangienne, sans maillage développée initialement pour des simulations de phénomènes astrophysiques. Depuis, elle a connu de nombreuses applications, notamment pour la simulation des écoulements des fluides. Contrairement aux méthodes utilisant un maillage, la méthode SPH peut gérer de manière naturelle et sans traitement spécifique les simulations des écoulements à sur- face libre et multiphasiques avec interface subissant de grandes déformations. Dans cette thèse, une modélisation SPH des écoulements des fluides multiphasiques a été réalisée en tenant compte de différentes complexités (écoulements à surface libre et multiphasiques interfacials) et de natures d'écoulement (si- mulation des fluides, des sols et les deux en interactions). Un modèle SPH faiblement compressible (WCSPH) a été proposé pour simuler les écoulements des fluides multiphasiques avec interface comprenant plus de deux phases de fluide. Ce modèle inclut le développement d’une nouvelle formulation de force de tension de surface en utilisant un opérateur SPH consistant de premier ordre. Une modification de condition généralisée aux parois solides a été apportée pour qu’elle soit appliquée sur les écoulements des fluides multiphasiques avec des rapports de densité et de viscosité élevés. Une nouvelle loi de comportement dépendant de la pression nommée RBMC-αμ ( Regularized Bingham Mohr Coulomb où αμ est un paramètre libre) a également été développée. Cette loi peut simuler les fluides (Newtonien, Binghamien), les sols (cohésif, frictionnel) et les deux en interactions. La loi précédente étant sensible à la pression, une extension du terme diffusif δ-SPH a été faite pour le cas des écoulements des fluides multiphasiques afin de réduire les oscillations de pression à haute fréquence qui sont dues à l’utilisation d’une équation d’état. La validation et l’application des modèles développés dans cette thèse sont montrées à travers plusieurs cas tests de difficulté croissante.Smoothed Particle Hydrodynamics (SPH) is a Lagrangian gridless method developed initially to simulate astrophysical phenomena, and since it has been known for a large number of applications, especially for fluid flow simulations. Contrary to the grid-based method, the SPH method can handle free surface and interfacial fluid flow simulation including large deformations naturally and without the need for any specific treatment. In this thesis a SPH modeling of multiphase fluid flows has been achieved with consideration of different complexities ( free surface and interfacial fluid flows) and natures (simulation of fluids, soil and both in interactions). A consistent weakly compressible SPH model (WCSPH) has been proposed to simulate interfacial multiphase fluid flows with more than two fluid phases. This model includes a new expression of the surface tension force using a first order consistency SPH operator. A modification to the well known generalized wall boundary condition have been brought in order to be applied to multiphase fluid flow with large density and viscosity ratios. A new pressure-based constitutive law named RBMC-αμ (Regularized Bingham Mohr Coulomb with αμ is free parameter) has been developed in this thesis. This model can simulate fluids (Newtonian, Binghamton), soils (cohesive, frictional) and both in interactions. Because the previous model is pressure sensitive, an extension of δ-SPH diffusive term has been proposed for multiphase fluid flows to overcome the hight frequency pressure oscillations due to the determination of pressure from an equation of state. The validation and application of the developed models have been shown in this thesis through several test-cases of increasing difficulty

    Modélisation des écoulements fluide multiphasiques avec une approche SPH

    No full text
    Smoothed Particle Hydrodynamics (SPH) is a Lagrangian gridless method developed initially to simulate astrophysical phenomena, and since it has been known for a large number of applications, especially for fluid flow simulations. Contrary to the grid-based method, the SPH method can handle free surface and interfacial fluid flow simulation including large deformations naturally and without the need for any specific treatment. In this thesis a SPH modeling of multiphase fluid flows has been achieved with consideration of different complexities ( free surface and interfacial fluid flows) and natures (simulation of fluids, soil and both in interactions). A consistent weakly compressible SPH model (WCSPH) has been proposed to simulate interfacial multiphase fluid flows with more than two fluid phases. This model includes a new expression of the surface tension force using a first order consistency SPH operator. A modification to the well known generalized wall boundary condition have been brought in order to be applied to multiphase fluid flow with large density and viscosity ratios. A new pressure-based constitutive law named RBMC-αμ (Regularized Bingham Mohr Coulomb with αμ is free parameter) has been developed in this thesis. This model can simulate fluids (Newtonian, Binghamton), soils (cohesive, frictional) and both in interactions. Because the previous model is pressure sensitive, an extension of δ-SPH diffusive term has been proposed for multiphase fluid flows to overcome the hight frequency pressure oscillations due to the determination of pressure from an equation of state. The validation and application of the developed models have been shown in this thesis through several test-cases of increasing difficulty.La méthode Smoothed Particle Hydrodynamics (SPH) est une méthode lagrangienne, sans maillage développée initialement pour des simulations de phénomènes astrophysiques. Depuis, elle a connu de nombreuses applications, notamment pour la simulation des écoulements des fluides. Contrairement aux méthodes utilisant un maillage, la méthode SPH peut gérer de manière naturelle et sans traitement spécifique les simulations des écoulements à sur- face libre et multiphasiques avec interface subissant de grandes déformations. Dans cette thèse, une modélisation SPH des écoulements des fluides multiphasiques a été réalisée en tenant compte de différentes complexités (écoulements à surface libre et multiphasiques interfacials) et de natures d'écoulement (si- mulation des fluides, des sols et les deux en interactions). Un modèle SPH faiblement compressible (WCSPH) a été proposé pour simuler les écoulements des fluides multiphasiques avec interface comprenant plus de deux phases de fluide. Ce modèle inclut le développement d’une nouvelle formulation de force de tension de surface en utilisant un opérateur SPH consistant de premier ordre. Une modification de condition généralisée aux parois solides a été apportée pour qu’elle soit appliquée sur les écoulements des fluides multiphasiques avec des rapports de densité et de viscosité élevés. Une nouvelle loi de comportement dépendant de la pression nommée RBMC-αμ ( Regularized Bingham Mohr Coulomb où αμ est un paramètre libre) a également été développée. Cette loi peut simuler les fluides (Newtonien, Binghamien), les sols (cohésif, frictionnel) et les deux en interactions. La loi précédente étant sensible à la pression, une extension du terme diffusif δ-SPH a été faite pour le cas des écoulements des fluides multiphasiques afin de réduire les oscillations de pression à haute fréquence qui sont dues à l’utilisation d’une équation d’état. La validation et l’application des modèles développés dans cette thèse sont montrées à travers plusieurs cas tests de difficulté croissante

    Modeling Heat Transfer through Permafrost Soil Subjected to Seasonal Freeze-Thaw

    No full text
    The present paper proposes an iterative implicit numerical method for simulating the thaw depth of permafrost soil. For this purpose, the enthalpy-porosity model was used for the phase change process, and the finite difference scheme FTCS (Forward Time Centered Space) was used for discretization. An artificial mushy zone was maintained with the same thickness by keeping the regularization parameter proportional to the temperature gradient. In doing so, we made the scheme more stable and convergence occurred faster. The model accuracy was validated by comparing the numerical results with the analytical Stefan solution and with the results of a derived numerical model, based on an explicit scheme. The model performance was also tested against observation data collected on four different landscapes with different soil profiles and located on a basin underlain by continuous permafrost. It was found that the proposed model matched noticeably well the analytical solution for a volumetric liquid fraction (phi) equal to 0.5 regardless of the grid resolution. Furthermore, compared with the observation data, the model reproduced the annual maximum thaw depth with an absolute error lying between 0.7 and 7.7%. In addition, the designed algorithm allowed the model to converge after a maximum of eight iterations, reducing the computational time by around 75% compared to the explicit model. The results were so encouraging that the model can be included in a hydrological modeling of permafrost watersheds or cold regions in general

    Modeling Heat Transfer through Permafrost Soil Subjected to Seasonal Freeze-Thaw

    No full text
    The present paper proposes an iterative implicit numerical method for simulating the thaw depth of permafrost soil. For this purpose, the enthalpy-porosity model was used for the phase change process, and the finite difference scheme FTCS (Forward Time Centered Space) was used for discretization. An artificial mushy zone was maintained with the same thickness by keeping the regularization parameter proportional to the temperature gradient. In doing so, we made the scheme more stable and convergence occurred faster. The model accuracy was validated by comparing the numerical results with the analytical Stefan solution and with the results of a derived numerical model, based on an explicit scheme. The model performance was also tested against observation data collected on four different landscapes with different soil profiles and located on a basin underlain by continuous permafrost. It was found that the proposed model matched noticeably well the analytical solution for a volumetric liquid fraction (phi) equal to 0.5 regardless of the grid resolution. Furthermore, compared with the observation data, the model reproduced the annual maximum thaw depth with an absolute error lying between 0.7 and 7.7%. In addition, the designed algorithm allowed the model to converge after a maximum of eight iterations, reducing the computational time by around 75% compared to the explicit model. The results were so encouraging that the model can be included in a hydrological modeling of permafrost watersheds or cold regions in general
    corecore